精英家教网 > 高中数学 > 题目详情
△ABC是正三角形,线段EA和DC都垂直于平面ABC,设EA=AB=2a,DC=a,且F为BE的中点,如图所示.
(1)求证:DF∥平面ABC;
(2)求证:AF⊥BD;
(3)求平面BDE与平面ABC所成的较小二面角的大小.
分析:(1)利用三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理即可证明;
(2)利用线面、面面垂直的判定和性质定理即可证明;
(3)延长ED交AC延长线于G′,连BG′,只要证明BG⊥平面ABE即可得到∠ABE为所求的平面BDE与平面ABC所成二面角,在等腰直角三角形ABE中即可得到.
解答:解:(1)证明:如图所示,取AB中点G,连CG、FG.
∵EF=FB,AG=GB,
∴FG
.
1
2
EA.
又DC
.
1
2
EA,∴FG
.
DC.
∴四边形CDFG为平行四边形,∴DF∥CG.
∵DF?平面ABC,CG?平面ABC,
∴DF∥平面ABC.
(2)证明:∵EA⊥平面ABC,
∴AE⊥CG.
又△ABC是正三角形,G是AB的中点,
∴CG⊥AB.
∴CG⊥平面AEB.
又∵DE∥CG,
∴DF⊥平面AEB.
∴平面AEB⊥平面BDE.
∵AE=AB,EF=FB,
∴AF⊥BE.
∴AF⊥平面BED,
∴AF⊥BD.
(3)解:延长ED交AC延长线于G′,连BG′.
由CD=
1
2
AE,CD∥AE知,D为EG′的中点,
∴FD∥BG′.
又CG⊥平面ABE,FD∥CG.
∴BG′⊥平面ABE.
∴∠EBA为所求二面角的平面角.
在等腰直角三角形AEB中,可得∠ABE=45°.
∴平面BDE与平面ABC所成的较小二面角是45°.
点评:熟练掌握三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理与线面、面面垂直的判定和性质定理及二面角的求法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC=
2
BB1
.求证:
(1)平面A1EC∥平面AB1D;
(2)平面A1BC1⊥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,五面体A-BCC1B1中,AB1=4,底面ABC是正三角形,AB=2,四边形BCC1B1是矩形,二面角A-BC-C1为直二面角,D为AC的中点.
(1)证明:AB1∥平面BDC1
(2)求二面角C-BC1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC是正三角形,若
a
=
AC
AB
与向量
AC
的夹角大于90°,则实数λ的取值范围是
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB和AB的中点.
(1)求证:FD∥平面ABC;
(2)求二面角B-FC-G的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2DC,F是BE的中点.求证:
(1)DF∥平面ABC;
(2)AF⊥BD.

查看答案和解析>>

同步练习册答案