精英家教网 > 高中数学 > 题目详情
如图,以椭圆的中心O为圆心,分别以a和b为半径作大圆和小圆.过椭圆右焦点F(c,0)(c>b)作垂直于x轴的直线交大圆于第一象限内的点A.连接OA交小圆于点B.设直线BF是小圆的切线.
(1)求证c2=ab,并求直线BF与y轴的交点M的坐标;
(2)设直线BF交椭圆于P、Q两点,求证=b2

【答案】分析:(1)直接利用Rt△OFA∽Rt△OBF,找到对应边的比值相等即可证明c2=ab,再求出直线OA的斜率,利用OA与直线BF垂直可得直线BF的斜率,进而求出直线BF的方程以及BF与y轴的交点M的坐标;
(2)先把直线BF的方程与椭圆方程联立,求出关于P、Q两点的坐标以及直线BF的斜率之间的等量关系,代入整理可得结论.(注意整理过程中要细心)
解答:解:(1)由题设条件知,Rt△OFA∽Rt△OBF,
,即,因此c2=ab.①(2分)
在Rt△OFA中,FA===b
于是,直线OA的斜KOA=.设直线BF的斜率为k,k=-=-
所以直线BF的方程为:(5分)
直线BF与y轴的交点为.(6分)
(2)由(1),得直线BF得方程为y=kx+a,
由已知,P(x1,y1),Q(x2,y2),则它们的坐标满足方程
由方程组③消y,并整理得(b2+a2k2)x2+2a3x2+2a3kx+a4-a2b2=0,④
由式①、②和④,.

综上,得到,(12分)
又因a2-ab+b2=a2-c2+b2=2b2,得
(15分)
点评:本题是对椭圆与圆以及直线与椭圆位置关系的综合考查.这一类型题目,思路比较清晰,就是整理过程要求比较高,所以在做题时,一定要认真,细致.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,以椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的中心O为圆心,分别以a和b为半径作大圆和小圆.过椭圆右焦点F(c,0)(c>b)作垂直于x轴的直线交大圆于第一象限内的点A.连接OA交小圆于点B.设直线BF是小圆的切线.
(1)求证c2=ab,并求直线BF与y轴的交点M的坐标;
(2)设直线BF交椭圆于P、Q两点,求证
OP
OQ
=
1
2
b2

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年天津卷理)(14分)

如图,以椭圆的中心O为圆心,分别以为半径作大圆和小圆。过椭圆右焦点作垂直于轴的直线交大圆于第一象限内的点A。连结OA交小圆于点B。设直线BF是小圆的切线。

  

(I)证明并求直线BF与同的交点M的坐标;

(II)设直线BF交椭圆P、Q两点,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

(22)如图,以椭圆(a>b>0)的中心O为圆心,分别以a和b为半径作大圆和小圆.过椭圆右焦点F(c,0)(c>b)作垂直于x轴的直线交大圆于第一象限内的点A.连结OA交小圆于点B.设直线BF是小圆的切线.

(Ⅰ)证明c2=ab,并求直线BF与y轴的交点M的坐标;

(Ⅱ)设直线BF交椭圆于P、Q两点,证明·=b2

查看答案和解析>>

科目:高中数学 来源:2011年浙江省杭州市萧山区高考数学模拟试卷05(文科)(解析版) 题型:解答题

如图,以椭圆的中心O为圆心,分别以a和b为半径作大圆和小圆.过椭圆右焦点F(c,0)(c>b)作垂直于x轴的直线交大圆于第一象限内的点A.连接OA交小圆于点B.设直线BF是小圆的切线.
(1)求证c2=ab,并求直线BF与y轴的交点M的坐标;
(2)设直线BF交椭圆于P、Q两点,求证=b2

查看答案和解析>>

同步练习册答案