精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式
(Ⅰ)若a=2,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[1,e]上的最小值;
(III)若f(x)在区间(1,e)上恰有两个零点,求a的取值范围.

解:(I)当a=2时,f(x)=,f′(x)=x-
∴f′(1)=-1,f(1)=
故f(x)在(1,f(1))处的切线方程为:y-=-(x-1)
化为一般式可得2x+2y-3=0…..(3分)
(Ⅱ)求导数可得f′(x)=x-=
由a>0及定义域为(0,+∞),令f′(x)=0,解得x=
①若≤1,即0<a≤1,在(1,e)上,f′(x)>0,f(x)在[1,e]上单调递增,
因此,f(x)在区间[1,e]的最小值为f(1)=
②若1<<e,即1<a<e2,在(1,)上,f′(x)<0,f(x)单调递减;
在(,e)上,f′(x)>0,f(x)单调递增,因此f(x)在区间[1,e]上的最小值为f()=
③若,即a≥e2在(1,e上,f′(x)<0,f(x)在[1,e]上单调递减,
因此,f(x)在区间[1,e]上的最小值为f(e)=
综上,当0<a≤1时,fmin(x)=;当1<a<e2时,fmin(x)=
当a≥e2时,fmin(x)=.….(9分)
(III) 由(II)可知当0<a≤1或a≥e2时,f(x)在(1,e)上是单调递增或递减函数,不可能存在两个零点.
当1<a<e2时,要使f(x)在区间(1,e)上恰有两个零点,则
,此时,e<a<
所以,a的取值范围为(e,)…..(13分)
分析:(Ⅰ)把a=2代入可得f′(1)=-1,f(1)=,进而可得方程,化为一般式即可;
(Ⅱ)可得x=为函数的临界点,分≤1,1<<e,,三种情形来讨论,可得最值;
(III)由(II)可知当0<a≤1或a≥e2时,不合题意,当1<a<e2时,需,解之可得a的范围.
点评:本题考查利用导数研究函数的切线,涉及函数的零点和闭区间的最值,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案