【题目】在平面直角坐标系中,定义点P(x1 , y1)、Q(x2 , y2)之间的“直角距离”为L(P,Q)=|x1﹣x2|+|y1﹣y2|,已知点A(x,1)、B(1,2)、C(5,2)三点.
(1)若L(A,B)>L(A,C),求x的取值范围;
(2)当x∈R时,不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.
【答案】
(1)解:由定义得|x﹣1|+1>|x﹣5|+1,
即|x﹣1|>|x﹣5|,两边平方得8x>24,
解得x>3
(2)解:当x∈R时,不等式|x﹣1|≤|x﹣5|+t恒成立,
也就是t≥|x﹣1|﹣|x﹣5|恒成立,
因为|x﹣1|﹣|x﹣5|≤|(x﹣1)﹣(x﹣5)|=4,所以t≥4,tmin=4.
故t的最小值为:4
【解析】(1)根据定义写出L(A,B),L(A,C)的表达式,最后通过解不等式求出x的取值范围;(2)当x∈R时,不等式L(A,B)≤t+L(A,C)恒成立即当x∈R时,不等式|x﹣1|≤|x﹣5|+t恒成立,运用分离变量,即有t≥|x﹣1|﹣|x﹣5|恒成立,可用绝对值不等式的性质,求得右边的最大值为4,令t不小于4即可.
科目:高中数学 来源: 题型:
【题目】生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.9603,则p= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)对一切实数x、y都满足f(x)≠0,且f(x+y)=f(x)f(y),已知f(x)在(0,+∞)上的值域为(0,1),则f(x)在R上的值域是( )
A.R
B.(0,1)
C.(0,+∞)
D.(0,1)∪(1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com