精英家教网 > 高中数学 > 题目详情

已知椭圆C的左,右焦点坐标分别为,离心率是。椭圆C的左,右顶点分别记为A,B。点S是椭圆C上位于轴上方的动点,直线AS,BS与直线分别交于M,N两点。

(1)       求椭圆C的方程;

(2)       求线段MN长度的最小值;

(3)       当线段MN的长度最小时,在椭圆C上的T满足:T到直线AS的距离等于.

试确定点T的个数。

 

【答案】

  解(1)因为,且,所以

         所以椭圆C的方程为         …………………………………………….3分

  (2 ) 易知椭圆C的左,右顶点坐标为,直线AS的斜率显然存在,且

         故可设直线AS的方程为,从而

         由

         设,则,得

         从而,即

         又,故直线BS的方程为

         由,所以

         故

         又,所以

        当且仅当时,即时等号成立

        所以时,线段MN的长度取最小值        ………………………………..9分

(3)由(2)知,当线段MN的长度取最小值时,

此时AS的方程为,

     因为点T到直线AS的距离等于

     所以点T在平行于AS且与AS距离等于的直线

     设,则由,解得

①  当时,由

        由于,故直线与椭圆C有两个不同交点

       ②时,由

由于,故直线与椭圆C没有交点

综上所求点T的个数是2.                ……………………………………………..14分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:广东省揭阳市2007年高中毕业班第一次高考模拟考试题(理科) 题型:044

如图,在直角坐标系xOy中,已知椭圆的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足,()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:2010年内蒙古赤峰市高三统考数学试卷(文科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

同步练习册答案