精英家教网 > 高中数学 > 题目详情
在直角坐标系内,如果一个点的横坐标和纵坐标都是整数,则称该点为整点.若凸边形的顶点都是整点,并且多边形内部及其边上没有其他整点,则         

解析:

显然满足题意.

,考察其顶点,由抽屉原理知道必然有两点的横坐标与纵坐标的奇偶性完全相同,不妨设为.则的中点必然是一个整点.而由凸边形的性质知道,线段的中点必然在该多边形的内部或者边上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某人上午7时,乘摩托艇以匀速v海里/时(4≤v≤20)从A港出发到距50海里的B港去,然后乘汽车以w千米/时(30≤w≤100)自B港向距300千米的C市驶去,应该在同一天下午4至9时到达C市.设汽车、摩托艇所需的时间分别是x,y小时.
(1)写出x,y所满足的条件,并在所给的平面直角坐标系内,作出表示x,y范围的图形;
(2)如果已知所需的经费z=100+3(5-x)+2(8-y)(元),那么v,w分别是多少时走得最经济?此时需花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵A=
2a
b0
属于特征值-1的一个特征向量为
1
-3
,求矩阵A的逆矩阵.

C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以M(-1,0)为圆心的圆与直线x-
3
y-3=0相切.
(1)求圆M的方程;
(2)如果圆周上存在两点关于直线mx+y+1=0对称,求m的值;
(3)已知A(-2,0),B(2,0),圆肘内的动点P满足|PA|•|PB|=|PO|2,求
PA
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市营业区内住宅电话通话费为前3分钟0.20元,以后每分钟0.10元(不足3分钟按3分钟计,以后不足1分钟按1分钟计).

(1)在直角坐标系内,画出一次通话在6分钟内(包括6分钟)的通话费y(元)关于通话时间t(分钟)的函数图象;

(2)如果一次通话t分钟(t>0),写出通话费y(元)关于通话时间t(分钟)的函数关系式(可用〈t〉表示不小于t的最小整数).

查看答案和解析>>

同步练习册答案