精英家教网 > 高中数学 > 题目详情
已知P是棱长为1的正方体ABCD—A1B1C1D1表面上的动点,且AP=,则动点P的轨迹的长度是(    )

A.            B.             C.3π           D.

解析:P点在以A为球心为半径的球上,又P点在正方体的表面上,故P的轨迹为三段相等圆弧(球被正方体各个面所截).

在上底面A1B1C1D1中,A1为圆弧所在的圆的圆心,利用球的截面性质知其半径为=1.故所求轨迹的长度为3××1=.

答案:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正四面体ABCD的棱长为3cm.
(1)求证:AD⊥BC;
(2)已知点E是CD的中点,点P在△ABC的内部及边界上运动,且满足EP∥平面ABD,试求点P的轨迹;
(3)有一个小虫从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,当它爬了12cm之后,求恰好回到A点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体ABCD的棱长为3cm.
(1)已知点E是CD的中点,点P在△ABC的内部及边界上运动,且满足EP∥平面ABD,试求点P的轨迹;
(2)有一个小虫从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,当它爬了12cm之后,求恰好回到A点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(理) 如图,已知四棱锥P-ABCD的底面ABCD是边长为a的正方形,点O为该正方形的中心,侧棱PA=PC,PB=PD.
(1)求证:四棱锥P-ABCD是正四棱锥;
(2)设点Q是侧棱PD的中点,且PD的长为2a.求异面直线OQ与AB所成角的大小.(用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理) 如图,已知四棱锥P-ABCD的底面ABCD是边长为a的正方形,点O为该正方形的中心,侧棱PA=PC,PB=PD.
(1)求证:四棱锥P-ABCD是正四棱锥;
(2)设点Q是侧棱PD的中点,且PD的长为2a.求异面直线OQ与AB所成角的大小.(用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源:2008年上海市静安区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

(理) 如图,已知四棱锥P-ABCD的底面ABCD是边长为a的正方形,点O为该正方形的中心,侧棱PA=PC,PB=PD.
(1)求证:四棱锥P-ABCD是正四棱锥;
(2)设点Q是侧棱PD的中点,且PD的长为2a.求异面直线OQ与AB所成角的大小.(用反三角函数表示)

查看答案和解析>>

同步练习册答案