精英家教网 > 高中数学 > 题目详情
8.等差数列{an}的前n项和记为Sn,已知a10=30,a20=50,Sn=242,求n.

分析 由题已知a10=30,a20=50,Sn=242可运用等差数列的定义(化为基本量a1,d),可建立关a1,d的方程,再利用求和公式求解可得.

解答 解:设等差数列{an}的公差为d,
∵a10=30,a20=50,∴$\left\{\begin{array}{l}{a_1}+9d=30\\{a_1}+19d=50\end{array}\right.,\left\{\begin{array}{l}{a_1}=12\\ d=2\end{array}\right.$.
由Sn=242,可得:12n+$\frac{2n(n-1)}{2}$=242,
化为:n2+11n-242=0,n∈N*
解得n=11.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.用描述法表示下列集合
(1)方程x3+4x=0的所有实数根组成的集合;
(2)所有奇数组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.到两条互相垂直的异面直线距离相等的点的轨迹,被过一直线与另一直线垂直的平面所截,截得的曲线为(  )
A.相交直线B.双曲线C.抛物线D.椭圆弧

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求二面角B-DC-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.“正三角形内部任意一点到3条边的距离之和为正三角形的高”类比到空间的一个结论为正四面体内部任意一点到4个面的距离之和为正四面体的高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知小矩形花坛ABCD中,AB=3m,AD=2m,现要将小矩形花坛建成大矩形花坛AMPN,使点B在AM上,点D在AN上,且对角线MN过点C.
(1)要使矩形AMPN的面积大于32m2,AN的长应在什么范围内?
(2)M,N是否存在这样的位置,使矩形AMPN的面积最小?若存在,求出这个最小面积及相应的AM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,若三个内角A,B,C成等差数列,且a=$\sqrt{2}$,b=$\sqrt{3}$,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的函数f(x),其周期为4,且当x∈[-1,3]时,f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,1]\\ 1-|x-2|,x∈(1,3]\end{array}$,若函数g(x)=f(x)-kx-k恰有4个零点,则实数k的取值范围是(-$\frac{{\sqrt{2}}}{4}$,-$\frac{1}{5}$)∪($\frac{{\sqrt{6}}}{12}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|kx2-2x-1=0}只有一个元素,则实数k的取值集合为(  )
A.{-1}B.{0}C.{-1,0}D.(-∞,-1]∪{0}

查看答案和解析>>

同步练习册答案