【题目】设数列{an}满足
.
(1)若
,求证:存在
(a,b,c为常数),使数列
是等比数列,并求出数列{an}的通项公式;
(2)若an 是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.
【答案】(1)
;(2)
,![]()
【解析】
试题分析:(1)根据等比数列定义可得
恒成立,根据对应项系数相等列方程组,解得各参数,再根据数列
通项公式得{an}的通项公式;
(2)设
,根据方程恒成立对应项系数相等列方程组,解得各参数,解得a1
最后根据等差数列求和公式逆推通项公式
试题解析:(1)证明:设数列{ an f(n) }的公比为
,则:
.
而![]()
![]()
![]()
.
由等式恒成立得
,解得
.
故存在
,使数列{ an f(n) }成公比为2的等比数列.
又
,所以
.
所以
.
(2) 因为an 是一个等差数列{bn}的前n项和,可设
,则:
.
又an1 = 2an n2 4n 1
.
由此得
,解得
.
所以
,所以
.
所以当
时,
.
当
时,
满足上式.
故
.
科目:高中数学 来源: 题型:
【题目】设a为正实数.如图,一个水轮的半径为a m,水轮圆心 O 距离水面
,已知水轮每分钟逆时针转动 5 圈.当水轮上的点 P 从水中浮现时(即图中点
)开始计算时间.
![]()
(1)将点 P 距离水面的高度 h(m )表示为时间 t(s)的函数;
(2)点 P 第一次达到最高点需要多少时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,以短轴端点和焦点为顶点的四边形的周长为
.
(Ⅰ)求椭圆
的标准方程及焦点坐标.
(Ⅱ)过椭圆
的右焦点作
轴的垂线,交椭圆于
、
两点,过椭圆上不同于点
、
的任意一点
,作直线
、
分别交
轴于
、
两点.证明:点
、
的横坐标之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:
是正实数,当
时,
,则称
是“
-数列”.已知数列
是“
-数列”.
(Ⅰ)若
,写出
的所有可能值;
(Ⅱ)证明:
是等差数列当且仅当
单调递减;
(Ⅲ)若存在正整数
,对任意正整数
,都有
,证明:
是数列
的最大项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一周期内的图象时,列表并填入了部分数据,如下表:
|
|
|
|
|
|
|
| ① |
| ||
|
|
|
|
|
|
(1)请将上面表格中①的数据填写在答题卡相应位置上,并直接写出函数
的解析式;
(2)若将函数
的图象上所有点的横坐标变为原来的
倍,纵坐标不变,得到函数
的图象,求当
时,函数
的单调递增区间;
(3)若将函数
图象上的所有点向右平移
个单位长度,得到
的图象. 若
图象的一个对称中心为
,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com