精英家教网 > 高中数学 > 题目详情

三棱锥P-ABC中,∠BAC=90°,PA=PB=PC=BC=2AB=2,
(1)求证:面PBC⊥面ABC
(2)求二面角B-AP-C的余弦值.

(1)证明:取BC中点O,连接AO,PO,由已知△BAC为直角三角形,
所以可得OA=OB=OC,又知PA=PB=PC,
则△POA≌△POB≌△POC
∴∠POA=∠POB=∠POC=90°,∴PO⊥OB,PO⊥OA,OB∩OA=O
所以PO⊥面BCA,PO?面ABC,∴面PBC⊥面ABC
(2)解:过O作OD与BC垂直,交AC于D点,
如图建立坐标系O-xyz
,B(0,-1,0),C(0,1,0),

设面PAB的法向量为n1=(x,y,z),由n1=0,n1=0,可知n1=(1,-,1)
求得面PAC的法向量为n1=(3,,1),cos(n1,n2)==
所以二面角B-AP-C的余弦值为
分析:(1)由题意由于三棱锥P-ABC中,∠BCA=90°,且PA=PB=PC=BC=2AB=2,所以可以取BC中点O,连接AO,PO,由已知△BAC为直角三角形,所以可得OA=OB=OC,又知PA=PB=PC,则△POA≌△POB≌△POC,利用该三角形的全等得到对应角相等,进而得到线面垂直及面面垂直即可;
(2)由题意可以建立如图所示的空间直角坐标系O-xyz,利用求空间点的坐标的方法可以求出点A,B,C,P的坐标,再由向量的坐标公式求出向量的坐标,由平面的法向量的定义及求解平面法向量的方法求出平面PAC的法向量,利用平面法向量的夹角公式与平面二面角之间的关系即可求解.
点评:此题重点考查了线面垂直与面面垂直的判定定理,还考查了利用空间向量的方法求解二面角的大小,还考查了学生的计算能力与空间想象的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.
(1)证明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=
π2
,PA=2,AB=AC=4,点D、E、F分别为BC、AB、AC的中点.
(I)求证:EF⊥平面PAD;
(II)求点A到平面PEF的距离;
(III)求二面角E-PF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)当k=
12
时,求直线PA与平面PBC所成角的大小;
(Ⅱ)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.
(1)证明平面PBF⊥平面PAC;
(2)判断AE是否平行于平面PFD,并说明理由;
(3)若PC=AB=2,求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是
6
6
6
6

查看答案和解析>>

同步练习册答案