精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\frac{1-x}{1+x}$,求:
(1)f(a)+1(a≠-1);
(2)f(a+1)(a≠-2)

分析 根据函数解析式直接代入求解即可.

解答 解:(1)∵f(x)=$\frac{1-x}{1+x}$,x≠-1,
∴f(a)+1=$\frac{1-a}{1+a}+1=\frac{1-a+1+a}{1+a}=\frac{2}{1+a}$,(a≠-1);
(2)f(a+1)=$\frac{1-(a+1)}{1+a+1}$=$\frac{-a}{a+2}$,(a≠-2).

点评 本题主要考查函数值的计算,根据函数的表达式直接代入是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.对于任意的x>1都有ax+$\frac{x}{x-1}$>b成立,其中a>0,b>0,试求a、b之间满足的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,a1=1,an=$\frac{{S}_{n}}{n}$+2(n-1)(n∈N+
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)是否存在自然数n,使得S1+$\frac{{S}_{2}}{2}$+$\frac{{S}_{3}}{3}$+…+$\frac{{S}_{n}}{n}$-(n-1)2=2013,若存在,求出n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx.
(1)求函数的单调区间;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知x0,x0+$\frac{π}{2}$是函数f(x)=cos2(ωx-$\frac{π}{6}$)-sin2ωx(ω>0)的两个相邻的零点.
(1)求f($\frac{π}{2}$)的值;
(2)若对?x∈[-$\frac{π}{12}$,0],有|f(x)-m|≤1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=2cosωx(ω>0)在区间[0,$\frac{2π}{3}$]上递减,且有最小值1,则ω的值等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用斜二测画法画出下列水平放置的平面图形的直观图.
(1)任意三角形;
(2)平行四边形;
(3)正八边形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=xlnx,g(x)=f′(x),A(x1,y1)、B(x2,y2)、C(x3,y3)为曲线y=g(x)图象上三点,且0<x1<x2<x3
(1)试求函数f(x)的单调区间和极值;
(2)设直线AB的斜率为k,若x0=$\frac{{x}_{1}+{x}_{2}}{2}$,判断k与g′(x0)的大小;
(3)证明:$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$>$\frac{g({x}_{3})-g({x}_{2})}{{x}_{3}-{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a+b=m${\;}^{\frac{1}{3}}$,ab=$\frac{1}{6}$m${\;}^{\frac{2}{3}}$(a>b),则a3+b3的值为(  )
A.0B.$\frac{m}{2}$C.-$\frac{m}{2}$D.$\frac{3}{2}$m

查看答案和解析>>

同步练习册答案