精英家教网 > 高中数学 > 题目详情
7.函数f(x)是定义在(-1,1)上的增函数,且f(a-2)-f(4-a2)<0,则a的范围$\sqrt{3}$<a<2.

分析 要求a的取值范围,先要列出关于a的不等式,这需要根据原条件,然后根据函数f(x)是定义在(-1,1)上的增函数,由函数值逆推出自变量的关系.

解答 解:∵f(a-2)-f(4-a2)<0,
∴f(a-2)<f(4-a2),
∵函数f(x)是定义在(-1,1)上的增函数,
∴-1<a-2<4-a2<1,
∴$\sqrt{3}$<a<2,
故答案为:$\sqrt{3}$<a<2.

点评 本题主要考查了单调性的应用,考查学生解不等式的能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\frac{\sqrt{lo{g}_{0.5}x-1}}{2x-1}$的定义域是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点(x,y)满足不等式组$\left\{{\begin{array}{l}{x-4y+3≤0}\\{2x-y-1≥0}\\{3x+2y-19≤0}\end{array}}\right.$,则$\frac{y}{x}$的最大值为(  )
A.1B.$\frac{2}{5}$C.$\frac{5}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“?x0∈R,2x0-3>1”的否定是(  )
A.?x0∈R,2x0-3≤1B.?x∈R,2x-3>1C.?x∈R,2x-3≤1D.?x0∈R,2x0-3>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=x2-2x的定义域为$[{-\frac{1}{3},\frac{11}{5}}]$,值域为[-1,$\frac{7}{9}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给出如下四个判断:
①若“p或q”为假命题,则p、q中至多有一个为假命题;
②命题“若a>b,则log2a>log2b”的否命题为“若a≤b,则log2a≤log2b”;
③对命题“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;
④在△ABC中,“sinA>$\frac{\sqrt{3}}{2}$”是“∠A>$\frac{π}{3}$”的充分不必要条件.
其中不正确的判断的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)在其定义域(0,+∞),f(2)=1,且对任意正数x,y都有f(xy)=f(x)+f(y)成立.
(1)求f(8)的值;
(2)若f(x)是定义域内的增函数,解关于x不等式f(x)+f(x-2)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\frac{{-{2^x}+a}}{{{2^{x+1}}+2}}$(a为实常数)是奇函数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=2.
(1)求证:AB1⊥BC1
(2)求AB的中点E到平面AB1C1的距离.

查看答案和解析>>

同步练习册答案