精英家教网 > 高中数学 > 题目详情

已知向量数学公式=(sinθ,2),数学公式=(cosθ,1),且数学公式数学公式,其中数学公式
(1)求sinθ和cosθ的值;
(2)若数学公式,求cosω的值.

(1)解:∵向量=(sinθ,2),=(cosθ,1),且
,即sinθ=2cosθ.
∵sin2θ+cos2θ=1,
解得
∴sin,cos
(2)解:∵,∴


∴cosω=cos[θ-(θ-ω)]=cosθcos(θ-ω)+sinθsin(θ-ω)=
分析:(1)通过向量的平行,推出sinθ=2cosθ,根据θ的范围,同角三角函数的基本关系式,直接求sinθ和cosθ的值;
(2)根据,求出,结合cosω=cos[θ-(θ-ω)]展开,即可求cosω的值.
点评:本题考查三角函数的化简求值,向量平行的应用,注意角的范围三角函数的符号,函数值的确定,角的变换的技巧,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinβ,1),
b
=(2,-1)且
a
b
π
2
<β<π,则β等于
5
6
π
5
6
π
弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinωx,-cosωx),
b
=(
3
cosωx,cosωx)(ω>0),函数f(x)=
a
b
+
1
2
,且函数f(x)=
3
sinωxcosωx-cos2ωx+
1
2
的图象中任意两相邻对称轴间的距离为π.
(1)求ω的值;
(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,f(C)=
1
2
,且c=2
19
,△ABC的面积S=2
3
,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,2)
(1)若
a
b
,求tanθ的值;
(2)若
a
b
,且θ为第Ⅲ象限角,求sinθ和cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)已知向量
a
=(sinα,1),
b
=(2,2cosα-
2
),(
π
2
<α<π
),若
a
b
,则sin(α-
π
4
)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(cosθ,
3
),且
a
b
,其中θ∈(0,
π
2
).
(1)求θ的值;
(2)若sin(x-θ)=
3
5
,0<x<
π
2
,求cosx的值.

查看答案和解析>>

同步练习册答案