精英家教网 > 高中数学 > 题目详情
如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.
(1)求证:AB∥GH;
(2)求二面角D-GH-E的余弦值.

【答案】分析:(1)由给出的D,C,E,F分别是AQ,BQ,AP,BP的中点,利用三角形中位线知识及平行公理得到DC平行于EF,再利用线面平行的判定和性质得到DC平行于GH,从而得到AB∥GH;
(2)由题意可知BA、BQ、BP两两相互垂直,以B为坐标原点建立空间直角坐标系,设出BA、BQ、BP的长度,标出点的坐标,求出一些向量的坐标,利用二面角的两个面的法向量所成的角的余弦值求解二面角D-GH-E的余弦值.
解答:(1)证明:如图,

∵C,D为AQ,BQ的中点,∴CD∥AB,
又E,F分别AP,BP的中点,∴EF∥AB,
则EF∥CD.又EF?平面EFQ,∴CD∥平面EFQ.
又CD?平面PCD,且平面PCD∩平面EFQ=GH,∴CD∥GH.
又AB∥CD,∴AB∥GH;
(2)由AQ=2BD,D为AQ的中点可得,三角形ABQ为直角三角形,
以B为坐标原点,分别以BA、BQ、BP所在直线为x、y、z轴建立空间直角坐标系,
设AB=BP=BQ=2,
则D(1,1,0),C(0,1,0),E(1,0,1),F(0,0,1),
因为H为三角形PBQ的重心,所以H(0,).


设平面GCD的一个法向量为
,得,取z1=1,得y1=2.
所以
设平面EFG的一个法向量为
,得,取z2=2,得y2=1.
所以
所以=
则二面角D-GH-E的余弦值等于
点评:本题考查了直线与平面平行的性质,考查了二面角的平面角及其求法,考查了学生的空间想象能力和思维能力,考查了计算能力,解答此题的关键是正确求出H点的坐标,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广州一模)如图所示,在三棱锥P-ABC中,AB=BC=
6
,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=
3

(1)证明△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,PA⊥面ABC,∠ABC=90°.该三棱锥中有哪些直角三角形,哪些面面垂直(只写结果,不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,PA⊥面ABC,∠ABC=90°.
(1)判断△PBC的形状;
(2)证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,AB=BC=
6
,平面PAC⊥平面ABC,PD⊥AC于点D,点O为AC的中点,AD=1,CD=3,PD=
3

(1)求证:BO⊥平面PAC
(2)证明:△PBC为直角三角形;
(3)求直线AP与平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB⊥AC,AB=AC=2,E为AC的中点.
(1)求异面直线BE与PC所成角的余弦值;
(2)求二面角P-BE-C的平面角的余弦值.

查看答案和解析>>

同步练习册答案