精英家教网 > 高中数学 > 题目详情
9.设p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0,若非p是非q的必要不充分条件,则实数a的取值范围是(  )
A.(-∞,0)∪($\frac{1}{2}$,+∞)B.(-∞,0]∪[$\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.[0,$\frac{1}{2}$]

分析 p:2x2-3x+1≤0,解得$\frac{1}{2}≤x≤1$.可得¬p.q:x2-(2a+1)x+a(a+1)≤0,解得:a≤x≤a+1.可得¬q.根据非p是非q的必要不充分条件即可得出.

解答 解:p:2x2-3x+1≤0,解得$\frac{1}{2}≤x≤1$.¬p:$x<\frac{1}{2}$或x>1.
q:x2-(2a+1)x+a(a+1)≤0,解得:a≤x≤a+1.¬q:x<a,或x>a+1.
∵非p是非q的必要不充分条件,∴$a≤\frac{1}{2}$且a+1≥1,解得$0≤a≤\frac{1}{2}$.
则实数a的取值范围是$[0,\frac{1}{2}]$.
故选:D.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设变量x、y满足约束条件$\left\{\begin{array}{l}{y≤x}&{\;}\\{x+y≥2}&{\;}\\{y≥3x-6}&{\;}\end{array}\right.$,则目标函数Z=4x+y+3的最小值为(  )
A.5B.8C.11D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xoy中,直线y=2x+b是曲线y=2alnx的切线,则当a>0时,实数b的最小值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌:“远看巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔,其古称浮屠,本题说它一共有七层宝塔,每层悬挂的红灯数是上一层的2倍,则这个塔顶有(  )盏灯.
A.1B.2C.3D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z满足|z|=3,且z的实部为1,则z的虚部为(  )
A.2$\sqrt{2}$iB.2$\sqrt{2}$C.±2$\sqrt{2}$iD.±2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”
C.在△ABC中,A>B是cosA<cosB的必要不充分条件
D.若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正四面体A-BCD的棱长为1,且$\overrightarrow{AE}$=2$\overrightarrow{EB}$,$\overrightarrow{AF}$=2$\overrightarrow{FD}$,则$\overrightarrow{EF}$•$\overrightarrow{DC}$=(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.-$\frac{2}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面α∩平面β=m,直线l?α,则“l⊥m”是“l⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2x3-3x2-12x+5.
(Ⅰ)求曲线y=f(x)在点x=1处的切线方程;
(Ⅱ)求函数y=f(x)在[0,3]的最值.

查看答案和解析>>

同步练习册答案