精英家教网 > 高中数学 > 题目详情
(2006•南汇区二模)若函数f(x)=ax+1-2a在[-1,1]上存在x0,使f(x0)=0(x0≠±1),则a的取值范围是
1
3
,1)
1
3
,1)
分析:由函数零点的判定定理可得f(-1)f(1)<0,即 (1-3a)(1-a)<0,解一元二次不等式求得a的取值范围.
解答:解:由函数零点的判定定理可得f(-1)f(1)<0,即 (1-3a)(1-a)<0,解得
1
3
<a<1,故a的取值范围是(
1
3
,1),
故答案为 (
1
3
,1)
点评:本题主要考查函数零点的判定定理的应用,一元二次不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•南汇区二模)已知数列{an}中,若2an=an-1+an+1(n∈N*,n≥2),则下列各不等式中一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)已知sinα=
3
5
,且
π
2
<α<π,则tan(α+
π
4
)
=
1
7
1
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)若虚数z满足z2=2
.
z
,则|z|=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)若|
a
|=3,|
b
|=4,
a
b
的夹角为60°,则|
a
+
b
|
=
37
37

查看答案和解析>>

同步练习册答案