精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式
(1)判断并证明f(x)的奇偶性
(2)判断f(x)在(2,+∞)上的单调性并加以证明;
(3)求f(x)单调区间、值域.

解:(1)函数f(x)的定义域为{x|x≠0},关于原点对称.
又f(-x)=-(x+)=-f(x),
所以f(x)为奇函数;
(2)f(x)在(2,+∞)上单调递增.
证明:f′(x)=1-=
当x∈(2,+∞)时,f′(x)>0,
所以f(x)在(2,+∞)上单调递增;
(3)f′(x)=1-
令1->0得x>2或x<-2;令1-<0得-2<x<0或0<x<2,
所以f(x)的单调递增区间为(-∞,-2),(2,+∞);单调递减区间为(-2,0),(0,2).
f(-2)=-2+=-4,f(2)=2+=4,
所以f(x)的值域为(-∞,-2]∪[2,+∞).
分析:(1)求出函数定义域,然后利用函数奇偶性的定义即可判断;
(2)运用导数容易作出正确判断;
(3)在定义域内解不等式f′(x)>0,f′(x)<0可求得单调区间,根据单调性即可求得值域;
点评:本题考查函数的奇偶性、单调性,定义是解决该类问题的基本方法,导数是研究函数单调性的有力工具,运用导数更加直接简便.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案