精英家教网 > 高中数学 > 题目详情

min{s1,s2,┅,sn},max{s1,s2,┅,sn}分别表示实数s1,s2,┅,sn中的最小者和最大者.
(1)作出函数f(x)=|x+3|+2|x-1|(x∈R)的图象;
(2)在求函数f(x)=|x+3|+2|x-1|(x∈R)的最小值时,有如下结论:f(x)min=min{f(-3),f(1)=4.请说明此结论成立的理由;
(3)仿照(2)中的结论,讨论当a1,a2,┅,an为实数时,函数f(x)=a1|x-x1|+a2|x-x2|+┅+an|x-xn|(x∈R,x1<x2<┅<xn∈R)的最值.

解:(1)f(x)=|x+3|+2|x-1|=其图象如图

(2)当x∈(-∞,-3)时,f(x)是减函数,
当x∈[-3,1)时,f(x)是减函数,
当x∈[1,+∞)时,f(x)是增函数,
∴f(x)min=min{f(-3),f(1)}=4.
(3)当a1+a2+┅+an<0时,f(x)max=maxf(x1),f(x2),┅,f(xn)};
当a1+a2+┅+an>0时,f(x)min=min{f(x1),f(x2),┅,f(xn)};
当a1+a2+┅+an=0时,f(x)min=min{f(x1),f(x2)},
f(x)max=maxf(x1),f(xn)}.
分析:(1)利用绝对值的意义,对x分段讨论取得绝对值符号,转化为分段函数,分段画出函数的图象.
(2)结合图象得到函数的单调性,利用单调性说明函数的最值在何处取得.
(3)利用类比推理得到一般情况下最值在何处取得.
点评:本题考查利用绝对值的意义分段讨论去绝对值转化为分段函数、利用函数的单调性求函数的最值、类比推理的推理方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合M={1,2,3,4,5,6},S1、S2、…、Sk都是M的含两个元素的子集,且满足:对任意的Si={ai,bi},Sj={aj,bj}(i≠j,i、j∈{1,2,3,…,k}),都有min{
ai
bi
bi
ai
}
≠min{
aj
bj
bj
aj
}
(min{x,y}表示两个数x、y中的较小者).则k的最大值是(  )
A、10B、11C、12D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

min{s1,s2,┅,sn},max{s1,s2,┅,sn}分别表示实数s1,s2,┅,sn中的最小者和最大者.
(1)作出函数f(x)=|x+3|+2|x-1|(x∈R)的图象;
(2)在求函数f(x)=|x+3|+2|x-1|(x∈R)的最小值时,有如下结论:f(x)min=min{f(-3),f(1)=4.请说明此结论成立的理由;
(3)仿照(2)中的结论,讨论当a1,a2,┅,an为实数时,函数f(x)=a1|x-x1|+a2|x-x2|+┅+an|x-xn|(x∈R,x1<x2<┅<xn∈R)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•崇明县一模)设集合M={1,2,3,4,5,6},S1,S2,…,SK都是M的含两个元素的子集,从中任选两个Si,Sj,Si={ai,bi},Sj={aj,bj},(i≠j),i,j∈{1,2,3,…,k},则min{
ai
bi
bi
ai
}
min{
aj
bj
bj
aj
},(min{x,y}
表示两个数x,y中的较小者)的概率等于
20
21
20
21

查看答案和解析>>

科目:高中数学 来源:2010年高考数学新题型解析选编(6)(解析版) 题型:解答题

min{s1,s2,┅,sn},max{s1,s2,┅,sn}分别表示实数s1,s2,┅,sn中的最小者和最大者.
(1)作出函数f(x)=|x+3|+2|x-1|(x∈R)的图象;
(2)在求函数f(x)=|x+3|+2|x-1|(x∈R)的最小值时,有如下结论:f(x)min=min{f(-3),f(1)=4.请说明此结论成立的理由;
(3)仿照(2)中的结论,讨论当a1,a2,┅,an为实数时,函数f(x)=a1|x-x1|+a2|x-x2|+┅+an|x-xn|(x∈R,x1<x2<┅<xn∈R)的最值.

查看答案和解析>>

同步练习册答案