精英家教网 > 高中数学 > 题目详情

(08年上虞市质量调测二文)如图,平面ABCD⊥平面ABEFABCD是边长为1的正方形,ABEF是矩形,且,G是线段EF的中点。

(I)求证:AG⊥平面BCG

(II) 求直线BE与平面ACG所成角的正弦值的大小。

 

 

解析:(I) 如图,以A为坐标原点,AF为x轴,AB为y轴,AD为z轴,建立空间直角坐标系。A(0,0,0), G(,,0), C(0,1,1), 

 AG⊥平面BCG

(Ⅱ)

则设面ACG的法向量为=(x,y,z)

?=x+y=0

?=y+z=0

取x=1,得=(1,-1,1)

=(,0,0)

所以,cos<>==

所以直线BE与平面ACG所成角的正弦值为 

法2.

(I)易知

 AG⊥平面BCG

(Ⅱ)由(I)AG⊥平面BCG

^面ACG

延长AG、BE交于K,连HK,

所以 ∠KHB即为直线BE与平面ACG所成角。

由(I)知,AG⊥平面BCG;,故AG^BG,

AF=BE= AB.

BG=AB,

BH===AB.

sin∠KHB==

所以直线BE与平面ACG所成角的正弦值为

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年西安市第一中学五模理)(12分) 已知长度为的线段的两端点在抛物线上移动,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.

(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;

(2)设通过最后三关后,能被录取的人数为,求随机变量的期望

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年周至二中三模理) 已知等差数列{an}的公差为2,若a1a3a4成等比数列,则a2等于         (    )

(A)-4   (B)-6     (C)-8     (D)-10

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年潍坊市六模) (12分)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年滨州市质检三文)(12分)已知函数.

   (I)当m>0时,求函数的单调递增区间;

   (II)是否存在小于零的实数m,使得对任意的,都有,若存在,求m的范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案