精英家教网 > 高中数学 > 题目详情
已知p:x2-4x-5>0,q:x2-2x+1-m2>0(m>0),若p是q的充分不必要条件,则m的最大值为______.
由p:x2-4x-5>0,解得x<-1或x>5,
q:x2-2x+1-m2>0(m>0),解得x>m+1或x<1-m,
p是q的充分不必要条件,所以
-1≤1-m
5≥m+1
,解得m≤2,
所以m的最大值为:2.
故答案为:2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P:x2-4x-12≤0,q:|x-m|≤m2(m∈R),若
.
p
.
q
的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

25、已知p:x2-4x+3<0,q:x2-(m+1)x+m<0,(m>1).
(1)求不等式x2-4x+3<0的解集;
(2)若p是q的充分不必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P={x|x2-4x+3≤0},Q={x|y=
x+1
+
3-x
},则“x∈P”是“x∈Q”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:x2-4x-12≤0,q:(x-m)(x+m-1)≤0(m>
12
)
,且¬p是¬q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)已知p:x2-4x-5>0,q:x2-2x+1-m2>0(m>0),若p是q的充分不必要条件,则m的最大值为
2
2

查看答案和解析>>

同步练习册答案