分析 由an=$\frac{2n+4}{3}$,可得a1=2,a2=$\frac{8}{3}$,a3=$\frac{10}{3}$,a4=4,a5,a6,a7,a8,a9,a10=8,…,对g公比q从小依次取q=$\frac{{a}_{2}}{{a}_{1}}$=$\frac{4}{3}$,取q=$\frac{{a}_{3}}{{a}_{1}}$=$\frac{5}{3}$,取q=$\frac{{a}_{4}}{{a}_{1}}$=2,即可得出结论.
解答 解:由an=$\frac{2n+4}{3}$,可得a1=2,a2=$\frac{8}{3}$,a3=$\frac{10}{3}$,a4=4,a5=$\frac{14}{3}$,a6=$\frac{16}{3}$,a7=6,a8=$\frac{20}{3}$,a9=$\frac{22}{3}$,a10=8,…,
①若取q=$\frac{{a}_{2}}{{a}_{1}}$=$\frac{4}{3}$,则${a}_{{k}_{3}}$=2×$(\frac{4}{3})^{2}$=$\frac{32}{9}$≠a3,不在数列{an}中.
同理:若取q=$\frac{{a}_{3}}{{a}_{1}}$=$\frac{5}{3}$,则${a}_{{k}_{3}}$=2$(\frac{5}{3})^{2}$=$\frac{50}{9}$不在数列{an}中.
②若取q=$\frac{{a}_{4}}{{a}_{1}}$=2,则${a}_{{k}_{3}}$=2×22=8=a10,在数列{an}中.
综上可得:满足条件的最小q的值为2.
故答案为:2.
点评 本题考查了等差数列与等比数列的通项公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 与m的值有关 | B. | 相离 | C. | 相切 | D. | 相交 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,4} | B. | {2,4,8} | C. | {3,8} | D. | {1,3,5,7} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | q∧q | B. | ¬p∧¬q | C. | ¬p∧q | D. | p∧¬q |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com