精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)求函数f(x)在 上的最大值与最小值;
(2)已知 ,x0∈( ),求cos4x0的值.

【答案】
(1)解:函数

化简可得:3 + sin2x﹣

= cos2x× + × sin2x+ sin2x﹣ cos2x

= sin2x﹣cos2x+

=2sin(2x﹣ )+

∵x∈ 上,

∴2x﹣ ∈[ ].

∴sin(2x﹣ )∈[ ,1].

函数f(x)在 上的最大值为 ,最小值为


(2)解:∵ ,即2sin(4x0 )+ =

sin(4x0 )=

∵x0∈( ),

4x0 ∈[ ,π],

∴cos(4x0 )=

cos4x0=cos[4x0 ]=cos(4x0 )cos ﹣sin(4x0 )sin = × =


【解析】(1)根据二倍角和两角差的正弦公式将f(x)化简为f(x)=Asin(ωx+φ)的形式,结合正弦函数的图象和性质可得到在给定区间的最值,(2)由题意代入找得到sin(4x0 ),cos(4x0 )的值,根据cos4x0=cos[(4x0 ) + ],由两角和的余弦公式展开代值可求得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,抛物线C:x2=2py(p>0),其焦点为F,C上的一点M(4,m)满足|MF|=4.

(1)求抛物线C的标准方程;
(2)过点E(﹣1,0)作不经过原点的两条直线EA,EB分别与抛物线C和圆F:x2+(y﹣2)2=4相切于点A,B,试判断直线AB是否经过焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示

x

﹣1

0

2

4

5

F(x)

1

2

1.5

2

1

下列关于函数f(x)的命题;
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数
③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)﹣a最多有4个零点.
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(n)=1+ + + +…+ ,g(n)= ,n∈N*
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为 (a为常数,n∈N*).
(1)求a1 , a2 , a3
(2)若数列{an}为等比数列,求常数a的值及an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4个新毕业的老师要分配到四所学校任教,每个老师都有分配(结果用数字表示).
(1)共有多少种不同的分配方案?
(2)恰有一个学校不分配老师,有多少种不同的分配方案?
(3)某个学校分配了2个老师,有多少种不同的分配方案?
(4)恰有两个学校不分配老师,有多少种不同的分配方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{ }的前10项的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有两个极值点x1 , x2 , 且x1<x2 , 记点M(x1 , f(x1)),N(x2 , f(x2)).
(Ⅰ)求直线MN的方程;
(Ⅱ)证明:线段MN与曲线y=f(x)有且只有一个异于M、N的公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(2,﹣3).
(1)若 垂直,求λ的值;
(2)求向量 方向上的投影.

查看答案和解析>>

同步练习册答案