精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,记bn=anan+1an+2(n为正整数),设Sn为{bn}的前n项和,且3a5=8a12>0,则当Sn取最大值时,n=______.
由bn=anan+1an+2且3a5=8a12>0,
所以,3a5=8(a5+7d)
所以,a5= -
56d
5
>0,即d<0
因为a16=a5+11d=-
d
5
>0
a17=a5+12d=
4d
5
<0

所以,a1>a2>…>a16>0>a17
所以,b1>b2>…>b14>0>b17>b18
因为,b15=a15a16a17<0,b16=a16a17a18>0
a15=a5+10d=-
6d
5
>0
a18=a5+13d=
9d
5
<0
a15<-a18
所以,b15>-b16即b15+b16>0
所以,S16>S14
所以S16最大.
故答案为:16
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数{an}的前n项和,已知S6=36,Sn=324,若Sn-6=144(n>6),则n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案