精英家教网 > 高中数学 > 题目详情
一束光线从点A(-1,1)发出,并经过x轴反射,到达圆(x-2)2+(y-3)2=1上一点的最短路程是
 
分析:根据对称变换的原则,我们可以将本题转化为求从点A(-1,-1)发出,并经过x轴反射,到达圆(x-2)2+(y-3)2=1上一点的最短路程,利用两点之间距离公式,我们求出点到圆心的距离,减去半径即可得到答案.
解答:解:一束光线从点A(-1,1)发出,并经过x轴反射,其光线所在的直线方程过点A关于X轴的对称点B,
则B点到圆(x-2)2+(y-3)2=1圆心(2,3)的距离为
(-1-2)2+(-1-3)2
=5,
则B点到(x-2)2+(y-3)2=1上一点的最短路程为5-1=4,
故答案为4.
点评:本题考查的知识点是直线与圆的位置关系,其中根据对称变换的原则,将已知问题转化为求从点A(-1,-1)发出,并经过x轴反射,到达圆(x-2)2+(y-3)2=1上一点的最短路程,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:x-y+3=0,一束光线从点A(1,2)处射向x轴上一点B,又从B点反射到l上一点C,最后又从C点反射回A点.
(Ⅰ)试判断由此得到的△ABC是有限个还是无限个?
(Ⅱ)依你的判断,认为是无限个时求出所以这样的△ABC的面积中的最小值;认为是有限个时求出这样的线段BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

一束光线从点A(-1,1)出发,经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路程是(  )
A、3
2
-1
B、2
6
C、4
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

一束光线从点A(-1,0)出发,经过直线l:2x-y+3=0上的一点D反射后,经过点B(1,0).
(1)求以A,B为焦点且经过点D的椭圆C的方程;
(2)过点B(1,0)作直线l交椭圆C于P、Q两点,以AP、AQ为邻边作平行四边形APRQ,求对角线AR长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一束光线从点A(-1,1)发出,经x轴反射到圆C:(x-2)2+(y-3)2=1上,最短路程是(    )

A.4                 B.5                 C.3-1            D.2

查看答案和解析>>

同步练习册答案