精英家教网 > 高中数学 > 题目详情
找出具有下列性质的所有正整数n:设集合{n,n+1,n+2,n+3,n+4,n+5}可以划分成两个无公共元素的非空子集,使得一个子集中所有元素的乘积等于另一子集中所有元素的乘积.

证明:假定n具有所述性质,那么六个数n,n+1,n+2,n+3,n+4,n+5中任一个素因数p必定还整除另一个数(在另一个子集中).因而p整除这两个数的差,所以p只能为2,3,5.

再考虑数n+1,n+2,n+3,n+4.它们的素因数不能为5(否则上面的六个数中只有一个被5整除),因此只能为2与3.这四个数中有两个为连续奇数.它们必须是3的正整数幂(因为没有其它因数),但这样两个幂的差被3整除,决不能等于2.矛盾!这就说明具有所述性质的n是不存在的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的所有函数f(x)组成的集合:对于函数f(x),定义域内的任意两个不同自变量x1,x2,均有|f(x1)-f(x2)|≤|x1-x2|成立.
(1)判断函数f(x)=3x+1是否属于集合M?说明理由;
(2)若g(x)=a(x+
1x
)
在(1,+∞)上属于M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知集合M是满足下列性质的所有函数f(x)组成的集合:对于函数f(x),定义域内的任意两个不同自变量x1,x2,均有|f(x1)-f(x2)|≤|x1-x2|成立.
(1)判断函数f(x)=3x+1是否属于集合M?说明理由;
(2)若数学公式在(1,+∞)上属于M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市十校高三(下)第二次联考数学试卷(理科)(解析版) 题型:解答题

已知集合M是满足下列性质的所有函数f(x)组成的集合:对于函数f(x),定义域内的任意两个不同自变量x1,x2,均有|f(x1)-f(x2)|≤|x1-x2|成立.
(1)判断函数f(x)=3x+1是否属于集合M?说明理由;
(2)若在(1,+∞)上属于M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市十校高三(下)第二次联考数学试卷(文科)(解析版) 题型:解答题

已知集合M是满足下列性质的所有函数f(x)组成的集合:对于函数f(x),定义域内的任意两个不同自变量x1,x2,均有|f(x1)-f(x2)|≤|x1-x2|成立.
(1)判断函数f(x)=3x+1是否属于集合M?说明理由;
(2)若在(1,+∞)上属于M,求实数a的取值范围.

查看答案和解析>>

同步练习册答案