精英家教网 > 高中数学 > 题目详情

已知集合M是满足下列性质的所有函数f(x)组成的集合:对于函数f(x),定义域内的任意两个不同自变量x1,x2,均有|f(x1)-f(x2)|≤|x1-x2|成立.
(1)判断函数f(x)=3x+1是否属于集合M?说明理由;
(2)若数学公式在(1,+∞)上属于M,求实数a的取值范围.

解:(1)f(x)=3x-1∉M,可举反例说明:
若x1=1,x2=2,则f(x1)=4,f(x2)=7,|f(x1)-f(x2)|=3≤1=|x1-x2|不成立.
(2)对任意两个自变量x1,x2∈(1,+∞),
因为|g(x1)-g(x2)|=
=恒成立.
?|a|•||≤1?|a|≤||
又x1>1,x2>1?x1x2>1?(0,1)?(1,+∞)
即|a|≤1
故a的取值范围是:[-1,1]
分析:(1)判断f(x)是否属于集合M,就看其是否满足条件,通过具体的反例可以直接判断出来.
(2)g(x)属于M则满足不等式条件,通过解恒成立的不等式,进而求得a的范围.
点评:考查反例在证明问题中的重要作用,同时考查不等式恒成立问题的解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
1
x
是否属于集合M?说明理由;
(2)设函数f(x)=lg
a
x2+1
∈M
,求a的取值范围;
(3)设函数y=2x图象与函数y=-x的图象有交点,证明:函数f(x)=2x+x2∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T•f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对定义域中的任意x,等式f(kx)=
k2
+f(x)恒成立.
(1)判断一次函数f(x)=ax+b(a≠0)是否属于集合M;
(2)证明函数f(x)=log2x属于集合M,并找出一个常数k;
(3)已知函数f(x)=logax( a>1)与y=x的图象有公共点,证明f(x)=logax∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列条件的函数f(x)的全体;
①当x∈[0,+∞)时,函数值为非负实数;
②对于任意的s、t∈x[0,+∞),λ>0,都有
f(x)+λf(t)
1+λ
≤f(
s+λt
1+λ
)

在三个函数f1(x)=x-1,f2(x)=2x-1f3(x)=ln
x+1
中,属于集合M的是
f3(x)
f3(x)
(写出您认为正确的所有函数.)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区三模)已知集合M是满足下列两个条件的函数f(x)的全体:①f(x)在定义域上是单调函数;②在f(x)的定义域内存在闭区间[a,b],使f(x)在[a,b]上的值域为[
a
2
 , 
b
2
]
.若函数g(x)=
x-1
+m
,g(x)∈M,则实数m的取值范围是
(0 , 
1
2
]
(0 , 
1
2
]

查看答案和解析>>

同步练习册答案