【题目】在正三棱柱ABC﹣A1B1C1中,若AB1⊥BC1 , 则下列关于直线A1C和AB1 , BC1的关系的判断正确的为( )
A.A1C和AB1 , BC1都垂直
B.A1C和AB1垂直,和BC1不垂直
C.A1C和AB1 , BC1都不垂直
D.A1C和AB1不垂直,和BC1垂直
【答案】A
【解析】解:设D为BC的中点,连结AD、B1D,设E为AB的中点,连结CE、A1E, ∵△ABC是正三角形,∴AD⊥BC,
由正三棱柱的性质可知,平面ABC⊥平面BB1C1C,
又平面ABC∩平面BB1C1C=BC,∴AD⊥平面BB1C1C,
∴B1D是AB1在平面BB1C1C上的射影,
同理,A1E是A1C在平面AA1B1B上的射影,
∵AB1⊥BC1 , 由三垂线逆定理可知,B1D⊥BC1 ,
∵长方形AA1B1B≌长方形BB1C1 , ∴A1E⊥AB1 , 由三垂线定理可知,AB1⊥A1C;
取AC中点F,连结BF、C1F,
∵△ABC是等边三角形,∴BF⊥AC,∵AA1⊥平面ABC,∴BF⊥AA1 ,
∵AA1∩AC=A,∴BF⊥平面ACC1A1 , ∵A1C平面ACC1A1 , ∴BF⊥A1C,
∵长方形AA1B1B≌长方形BB1C1≌长方形AA1C1C,∴A1C⊥C1F,由三垂线定理可知,BC1⊥A1C.
∴A1C和AB1 , BC1都垂直.
故选:A.![]()
【考点精析】通过灵活运用空间中直线与平面之间的位置关系,掌握直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点即可以解答此题.
科目:高中数学 来源: 题型:
【题目】下列选项中,说法正确的个数是( )
①命题“
”的否定为“
”;
②命题“在
中,
,则
”的逆否命题为真命题;
③设
是公比为
的等比数列,则“
”是“
为递增数列”的充分必要条件;
④若统计数据
的方差为
,则
的方差为
;
⑤若两个随机变量的线性相关性越强,则相关系数绝对值越接近1.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,将曲线
上的所有点横坐标伸长为原来的
倍,纵坐标伸长为原来的2倍后,得到曲线
,在以
为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程是
.
(1)写出曲线
的参数方程和直线
的直角坐标方程;
(2)在曲线
上求一点
,使点
到直线
的距离
最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下结论: ①当x>1时,甲走在最前面;
②当x>1时,乙走在最前面;
③当0<x<1时,丁走在最前面,当x>1时,丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为(把正确结论的序号都填上,多填或少填均不得分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①命题“x∈R,x2+x+1=0”的否定是“x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤﹣1},则A∩(RB)=A;
③函数f(x)=sin(ωx+φ)(ω>0)是偶函数的充要条件是φ=kπ+
(k∈Z);
④若非零向量
,
满足
=λ
,
=λ
(λ∈R),则λ=1.
其中正确命题的序号有
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)求实数a的取值范围以及直线l的方程;
(2)若圆C上存在动点N使CN=2MN成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a≠0,集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8≥0},C={x|x2﹣4ax+3a2<0},且C(A∩RB).求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com