精英家教网 > 高中数学 > 题目详情
11.已知椭圆C:$\frac{x^2}{16}$+$\frac{y^2}{7}$=1的左焦点为F,A,B是C上关于原点对称的两点,且∠AFB=90°,则△ABF的周长为(  )
A.10B.12C.14D.16

分析 根据椭圆的对称性和定义可得|AF|+|BF|=2a=8,求出|AB|,即可求出△ABF的周长.

解答 解:根据椭圆的对称性和定义可得|AF|+|BF|=2a=8,
因为∠AFB=90°,|OF|=c,所以|AB|=2c=6,
所以△ABF的周长为2a+2c=14.
故选:C.

点评 本题考查椭圆的对称性和定义,考查学生的计算能力,熟练掌握椭圆的定义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x>2}\\{lo{g}_{\frac{1}{2}}(\frac{9}{4}-x)+{a}^{2},x≤2}\end{array}\right.$,若f(x)的值域为R,则实数a的取值范围是(-∞,-1]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设角α的顶点与原点O重合,始边与x轴的非负半轴重合,P(-2,-2$\sqrt{3}$)是角α终边上一点,则sin2α的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,根据算法的程序框图,当输入n=6时,输出的结果是(  )
A.35B.84C.49D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overline z$=$\frac{i}{1-i}$是复数z的共轭复数,则z=(  )
A.-$\frac{1}{2}$-$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}的前n项和为Sn,an+3=2+an,S90=2670,则a1+a2+a3=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知全集U={0,1,2,3,4,5},集合A={x∈N|x2-4x-5<0},B={1,2,4,5},则∁U[A∩(∁UB)]=(  )
A.{0,3}B.{2,4,5}C.{1,2,3,4}D.{1,2,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知5a=2,则log580-3log210=(  )
A.a4-3a-2B.a4-$\frac{3}{a}$-2C.a-2D.4a-$\frac{3}{a}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.

(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求棱锥E-DFC的体积;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出$\frac{BP}{BC}$的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案