分析 求出A中不等式的解集确定出A,分类讨论a的范围表示出B,
(1)根据B为A的子集,确定出a的范围即可;
(2)根据两集合的交集为空集,分B为空集与B不为空集两种情况求出a的范围即可.
解答 解:由A中不等式变形得:(x+2)(x-4)<0,
解得:-2<x<4,即A=(-2,4),
由B中不等式变形得:(x-a)(x-2a)<0,
当a>2a,即a<0时,解得:2a<x<a,此时B=(2a,a);
当a<2a,即a>0时,解得:a<x<2a,此时B=(a,2a),
当a=2a,即a=0时,B=∅,
(1)∵B⊆A,B=(2a,a),A=(-2,4),
∴$\left\{\begin{array}{l}{2a≥-2}\\{a≤4}\end{array}\right.$,且a<0,即-1≤a<0;
∵B⊆A,B=(a,2a),A=(-2,4),
∴$\left\{\begin{array}{l}{a≥-2}\\{2a≤4}\end{array}\right.$,且a>0,即0<a≤2,
当B=∅,即a=0时,满足题意,
综上,a的范围为-1≤a≤2;
(2)A∩B=∅,
当B=∅时,a=2a,即a=0;
当B≠∅时,B=(2a,a),A=(-2,4),
可得a≤-2或a≥4(舍去);
B=(a,2a),A=(-2,4),可得2a≤-2或a≥4,
解得:a≤-1(舍去)或a≥4,
综上,a的范围为:a≥4或a≤-2或a=0.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | (-4,-1)∪(1,4) | B. | (-∞,4)∪(-1,0) | C. | (-∞,-4)∪(4,+∞) | D. | (-∞,-4)∪(-1,0)∪(1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com