精英家教网 > 高中数学 > 题目详情
17.已知A(0,2),B(1,$\sqrt{3}$),B′为点B关于y轴的对称点
(1)求△ABB′的外接圆方程
(2)过点$P(1,\sqrt{2})$作△ABB′的外接圆的两条互相垂直的弦AC,BD,求|AC|+|BD|的最大值.

分析 (1)由题意可得 ${B^/}(-1,\sqrt{3})$,设圆的一般方程为x2+y2+Dx+Ey+F=0,将点A、A′、B的坐标代入可得D、E、F的值,可得△ABB′的外接圆方程.
(2)设O到直线AC,BD的距离分别为m,n (m≥0,n≥0),则m2+n2=3,求得|AC|、|BD|再利用基本不等式求得|AC|+|BD|的最大值.

解答 解:(1)由题意可得 ${B^/}(-1,\sqrt{3})$,设圆的一般方程为x2+y2+Dx+Ey+F=0,
将点A、A′、B的坐标代入可得D=E=0,F=-4,
所以△ABB′的外接圆方程x2+y2=4.
(2)设O到直线AC,BD的距离分别为m,n (m≥0,n≥0),则m2+n2=3,
则$|{AC}|=2\sqrt{4-{m^2}},|{BD}|=2\sqrt{4-{n^2}}$,所以$|{AC}|+|{BD}|=2\sqrt{4-{m^2}}+2\sqrt{4-{n^2}}$,
所以,(|AC|+|BD|)2=${(2\sqrt{4{-m}^{2}}+2\sqrt{4{-n}^{2}})}^{2}$=20+8$\sqrt{4{+m}^{2}{•n}^{2}}$=4(5+2$\sqrt{4{+m}^{2}{•n}^{2}}$ ).
因为m2+n2=3≥2mn,所以${m^2}{n^2}≤\frac{9}{4}$,当且仅当${m^2}={n^2}=\frac{3}{2}$取等号,
∴$\sqrt{4{+m}^{2}{•n}^{2}}$≤$\frac{5}{2}$•(|AC|+|BD|)2=$\frac{5}{2}$•4(5+$\sqrt{4{+m}^{2}{•n}^{2}}$)≤$\frac{5}{2}$•4•(5+$\sqrt{4+\frac{9}{4}}$)=75,
即(|AC|+|BD|)2=≤30,∴|AC|+|BD|≤$\sqrt{30}$,
即|AC|+|BD|的最大值为 $\sqrt{30}$.

点评 本题主要考查用待定系数法求三角形的外接圆方程,弦长公式、基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.不等式lg(x2-3x)<1的解集为(  )
A.(-2,5)B.(-5,2)C.(3,5)D.(-2,0)∪(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:幂函数y=x1-a在(0,+∞)上是减函数;命题q:?x∈R,ax2-ax+1>0恒成立.如果p∧q为假命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合$A=\{x|\frac{x+2}{4-x}>0\},B=\{x|{x^2}-3ax+2{a^2}<0\}$.
(1)若B⊆A,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=1-2sinx(sinx+$\sqrt{3}$cosx)的图象向左平移$\frac{π}{3}$个单位得函数g(x)的图象,则函数g(x)的解析式是(  )
A.g(x)=2sin(2x-$\frac{π}{2}$)B.g(x)=2cos2xC.g(x)=2cos(2x+$\frac{2π}{3}$)D.g(x)=2sin(2x+π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.两圆x2+y2=4与(x+1)2+(y-1)2=1的位置关系是(  )
A.内含B.相交C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点P(1,1),圆C:x2+y2-4x=2,过点P的直线l与圆C交于A,B两点,线段AB的中点为M(M不同于P),若|OP|=|OM|,则l的方程是3x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+3log2(x+1)+m(m为常数),则m=0,f(-1)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(2x+φ),(φ∈R),若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且f($\frac{π}{2}$)<f(π),对于结论:①f($\frac{π}{2}$)=-$\frac{1}{2}$;②f(x)是奇函数;③f(x)的单调递增区间是[kx-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z);④f($\frac{7π}{10}$)>f($\frac{π}{5}$),其中正确的是(  )
A.①②B.②③C.③④D.①③

查看答案和解析>>

同步练习册答案