精英家教网 > 高中数学 > 题目详情
8.已知命题p:幂函数y=x1-a在(0,+∞)上是减函数;命题q:?x∈R,ax2-ax+1>0恒成立.如果p∧q为假命题,p∨q为真命题,求实数a的取值范围.

分析 命题p真,利用幂函数的单调性可得:1-a<0?a>1;若命题q真,则$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a<0}\end{array}\right.$或a=0.由于p∧q假,p∨q真,可得命题p与q一真一假.即可得出.

解答 解 若命题p真,1-a<0?a>1,那么p假时,a≤1;
若命题q真,则$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a<0}\end{array}\right.$或a=0?0≤a<4,
那么q假时,a<0或a≥4.
∵p∧q假,p∨q真,∴命题p与q一真一假.
当命题p真q假时,$\left\{\begin{array}{l}{a>1}\\{a<0或a≥4}\end{array}\right.$?a≥4.
当命题p假q真时,$\left\{\begin{array}{l}{a≤1}\\{0≤a<4}\end{array}\right.$?0≤a≤1.
∴所求a的取值范围是[0,1]∪[4,+∞).

点评 本题考查了简易逻辑的判定方法、幂函数的单调性、一元二次不等式的解集与判别式的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.椭圆$\frac{{x}^{2}}{4}+{y}^{2}=1$上的一点P到左焦点的距离为1,则点P到椭圆右准线的距离为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数$f(x)=\frac{lg(x+2)}{x+1}$的定义域是(  )
A.(-∞,-1)∪(-1,+∞)B.(-2,+∞)C.(-2,-1)∪(-1,+∞)D.[-2,-1)∪(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知y=f(x)是定义在[1,4)上的函数,则函数y=f(2x+1)的定义域为[0,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在A,B两点间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条且使每条网线通过最大信息量,则选取的三条网线由A到B可通过的信息总量为6时的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\frac{π}{2}-2arcsin({2x+1})$,则${f^{-1}}({-\frac{π}{2}})$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知不等式x2-3x+t<0的解集为{x|1<x<m,m∈R}.
(1)求t,m的值;
(2)若f(x)=-x2+ax+4在(-1,1)上递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A(0,2),B(1,$\sqrt{3}$),B′为点B关于y轴的对称点
(1)求△ABB′的外接圆方程
(2)过点$P(1,\sqrt{2})$作△ABB′的外接圆的两条互相垂直的弦AC,BD,求|AC|+|BD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.k>3是方程$\frac{{x}^{2}}{k-3}-\frac{{y}^{2}}{k-7}$=1表示的曲线是椭圆的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案