精英家教网 > 高中数学 > 题目详情
计算:
(1)(2
3
5
0+2-2-(2
1
4
 
1
2
+(
25
36
0.5+(
(-2)2

(2)
1
2
lg
32
49
-
4
3
lg
8
+lg
245
考点:对数的运算性质,有理数指数幂的化简求值
专题:计算题,函数的性质及应用
分析:(1)利用指数幂的运算法则即可得出;
(2)利用对数的运算法则即可得出.
解答: 解:(1)原式=1+
1
4
-(
3
2
)
1
2
+(
5
6
)2×0.5
+2
=1+
1
4
-
3
2
+
5
6
+2
=3.
(2)原式=lg
32
49
×245
2
3
2
×
4
3
=lg
32×5
4
=lg
10
=
1
2
点评:本题考查了指数幂与对数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)为偶函数,且x0是的y=f(x)+ex一个零点,则-x0一定是下列哪个函数的零点(  )
A、y=f(-x)ex-1
B、y=f(x)ex+1
C、y=f(x)ex-1
D、y=f(x)e-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1+2ai)•i=1-bi,其中a,b∈R,则|a+bi|=(  )
A、
1
2
+i
B、
5
C、
5
2
D、
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-1≤x≤2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围为(  )
A、{a|a<2}
B、{a|a≥-1}
C、{a|a>-1}
D、{a|-1≤a<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

若2lg(x-2y)=lgx+lgy(x,y∈R),则
y
x
的值为(  )
A、4
B、1或
1
4
C、1或4
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式(式中各字母均为正数):
(1)4x
1
4
(-3x
1
4
y-
1
3
)÷(-6x-
1
2
y-
2
3

(2)log2(log216)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列函数,其中奇函数的个数为(  )
①y=
ax+1
ax-1
;  ②y=
lg(1-x2)
|x+5|-5
;  ③y=
|x|
x
;  ④y=loga
1+x
1-x
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
3x-
1
3
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.
(1)若a=1,b=3,按上述规则操作三次,则第三次扩充所得的新数是
 

(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n-1(m,n为正整数),则m+n的值为
 

查看答案和解析>>

同步练习册答案