精英家教网 > 高中数学 > 题目详情
若直线相交,则过点与椭圆的位置关系为(     )
A.点在椭圆B.点在椭圆
C.点在椭圆D.以上三种均有可能
C

试题分析:由于直线mx+ny=4和⊙O:x2+y2=4相交,可得圆心(0,0)到直线的距离d<r.
<2,得到m2>4-n2.进而得到>1,即可判断出位置关系.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为原点,离心率,其一个焦点在抛物线的准线上,若抛物线与直线相切.
(1)求该椭圆的标准方程;
(2)当点在椭圆上运动时,设动点的运动轨迹为.若点满足:,其中上的点,直线的斜率之积为,试说明:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的焦点分别为,长轴长为6,设直线交椭圆C于A、B两点,求线段AB的中点坐标

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率与双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)设第(2)问中的轴交于点,不同的两点上,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知对于任意实数k,直线(k+1)x+(k)y-(3k)=0恒过定点F.设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为2+.
(1)求椭圆C的方程;
(2)设(mn)是椭圆C上的任意一点,圆Ox2y2r2(r>0)与椭圆C有4个相异公共点,试分别判断圆O与直线l1mxny=1和l2mxny=4的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆=1(a>b>0)的左、右焦点分别是F1F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆C=1(a>b>0)的左、右焦点分别为F1F2PC上的点,PF2F1F2,∠PF1F2=30°,则C的离心率为(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆y2=1的两个焦点为F1F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|=(  ).
A.B.C.D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是双曲线的两个焦点,是双曲线与椭圆的一个公共点,则的面积等于_________.

查看答案和解析>>

同步练习册答案