精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\sqrt{lo{g}_{\frac{1}{3}}(x-2)}$的定义域为A,函数g(x)=($\frac{1}{2}$)x(x≥-2)的值域为B.
(1)求(∁RA)∩B;
(2)若集合C={x|a≤x≤2a-2}且A∩C=C,求实数a的取值范围.

分析 (1)分别求解函数的定义域和值域化简集合A,B,求出(∁RA,然后利用交集运算得答案;
(2)由A∩C=C,得C⊆A,然后转化为两集合端点值间的关系得答案.

解答 解:(1)由$lo{g}_{\frac{1}{3}}(x-2)≥0$,得0<x-2≤1,即2<x≤3,
∴A=(2,3],则∁RA=(-∞,2]∪(3,+∞);
∵g(x)=($\frac{1}{2}$)x(x≥-2),∴g(x)∈(0,4],
∴B=(0,4].
∴(∁RA)∩B=(0,2]∪(3,4];
(2)由A∩C=C,得C⊆A,
∵A=(2,3],C={x|a≤x≤2a-2},
∴a>2a-2或$\left\{\begin{array}{l}{a≤2a-2}\\{a>2}\\{2a-2≤3}\end{array}\right.$,∴a≤$\frac{5}{2}$.

点评 本题考查函数的定义域及其值域的求法,考查了交、并、补集的混合运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.函数f(x)=2$\sqrt{3}$cos2ωx+2sinωcosωx-$\sqrt{3}$(ω>0),其图象上相邻两个最高点之间的距离为$\frac{2}{3}$π.
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到y=g(x)的图象,求g(x)在[0,$\frac{4π}{3}$]上的单调增区间;
(Ⅲ)在(Ⅱ)的条件下,求方程g(x)=t(0<t<2)在[0,$\frac{8}{3}$π]内所有实根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x•tanx,若x1,x2∈(-$\frac{π}{2}$,$\frac{π}{2}$),且f(x1)>f(x2),则下列结论中一定成立的是(  )
A.x1>x2B.x1<x2C.x1+x2>0D.x12>x22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若四面体的三视图如图所示,则该四面体的外接球表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于m的不等式组$\left\{\begin{array}{l}{\frac{2(m-1)}{3}-\frac{5m+1}{2}≥-3}\\{3m-2(m-1)≥a}\end{array}\right.$ 的非正整数解是-3,-2,-1,0,则a的最大值为(  )
A.-3B.0C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点P在曲线ρcosθ+2ρsinθ=3上,其中0≤θ≤$\frac{π}{4}$,ρ>0,则点P轨迹是(  )
A.直线x+2y-3=0B.以(3,0)为端点的射线
C.圆(x-2)2+y2=1D.以(1,1),(3,0)为端点的线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,PA=CD=AD=2AB=2,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE∥面PAD;
(2)求直线BE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设i是虚数单位,则复数$\frac{2i}{1+i}$在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案