精英家教网 > 高中数学 > 题目详情
9.设i是虚数单位,则复数$\frac{2i}{1+i}$在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由复数代数形式的乘除运算化简复数$\frac{2i}{1+i}$,求出复数$\frac{2i}{1+i}$在复平面内所对应的点的坐标,则答案可求.

解答 解:由$\frac{2i}{1+i}$=$\frac{2i(1-i)}{(1+i)(1-i)}=1+i$,
则复数$\frac{2i}{1+i}$在复平面内所对应的点的坐标为:(1,1),位于第一象限.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\sqrt{lo{g}_{\frac{1}{3}}(x-2)}$的定义域为A,函数g(x)=($\frac{1}{2}$)x(x≥-2)的值域为B.
(1)求(∁RA)∩B;
(2)若集合C={x|a≤x≤2a-2}且A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\left\{\begin{array}{l}{{a}^{x-a},x≤a}\\{-{x}^{2}+2ax-{a}^{2}+2a,x>a}\end{array}\right.$(a>0且a≠1)在其定义域内单调,则实数a的取值范围为(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{2}$]C.($\frac{1}{2}$,1)D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线y=a分别与函数y=4x+4和y=3x+lnx的图象相交于M、N两点,则|MN|的最小值为(  )
A.5B.1C.$\frac{5}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,一艘船下午13:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,14:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距9$\sqrt{2}$海里,则此船的航速为36海里/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.祖暅,字景烁,祖冲之之子,南北朝时代的伟大科学家.祖暅在数学上有突出的贡献,他在实践的基础上,于5世纪末提出下面的计算原理:祖暅原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,请同学们用祖暅原理解决如下问题:如图,有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,再注入水,使水面与球正好相切(而且球与倒圆锥相切效果很好,水不能流到倒圆锥容器底部),然后将球取出,则这时容器中水的深度为$\root{3}{15}$r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex+ax-1(a∈R).
(1)求函数f(x)的单调区间;
(2)记函数f(x)的导数为f′(x),证明:对任意a∈R,给定x1,x2且x1<x2存在x0∈(x1,x2),使得f′(x0)=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,x).
(1)当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,求x的值;
(2)若x=$\frac{1}{2}$,求|$\overrightarrow{a}$+2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年内蒙古高二文上月考一数学试卷(解析版) 题型:选择题

已知双曲线-=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )

A. B.4 C.3 D.5

查看答案和解析>>

同步练习册答案