精英家教网 > 高中数学 > 题目详情
(1)把下列的极坐标方程化为直角坐标方程(并说明对应的曲线):ρcos(θ-
π
4
)=
2

(2)把下列的参数方程化为普通方程(并说明对应的曲线):
x=cosθ
y=cos2θ-6
(θ为参数)
考点:参数方程化成普通方程
专题:选作题,坐标系和参数方程
分析:(1)先将原极坐标方程化为ρcosθ+ρsinθ=2,直再利用角坐标与极坐标间的关系化成直角坐标方程即可;
(2)利用代入法,即可求出普通方程.
解答: 解:(1)∵ρcos(θ-
π
4
)=
2

∴ρcosθ+ρsinθ=2,
∵ρcosθ=x,ρsinθ=y,
∴x+y=2,表示的曲线为直线     …(5分)
(2)∵
x=cosθ
y=cos2θ-6
(θ为参数),
∴y=x2-6,(-1≤x≤1)
表示的曲线为抛物线的一部分.…(10分)
点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义某种运算S=a?b,运算原理如图所示,则式子(2tan
4
)?sin
2
+(4cos
3
)?(
1
3
-1的值为(  )
A、4B、8C、11D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+3x-4的零点个数是(  )
A、1B、2C、3D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-cos(
π
3
-
x
2
)的单调递增区间是(  )
A、[2kπ-
4
3
π,2kπ+
2
3
π](k∈Z)
B、[4kπ-
4
3
π,4kπ+
2
3
π](k∈Z)
C、[2kπ+
2
3
π,2kπ+
8
3
π](k∈Z)
D、[4kπ+
2
3
π,4kπ+
8
3
π](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:
1
mx-2
>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}为正项递增数列,且a2a8=4,a4+a6=
20
3
,数列bn=log2
an
2
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)Tn=b1+b2+b22+…+b2n-1,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明:mC
 
m
n
=nC
 
m-1
n-1
,m≤n,m,n∈N+
(2)证明:随机变量ε,若满足?-B(n,p),则Eε=np.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:12+22+32+…+(n-1)2+n2=
n(n+1)(2n+1)
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是椭圆W:
x2
4
+y2=1上的三个点,O是坐标原点,当点B不是W的顶点时,判断四边行OABC是否是矩形,并说明理由.

查看答案和解析>>

同步练习册答案