精英家教网 > 高中数学 > 题目详情
9.解下列不等式.
(1)6x2-x-1≥0;
(2)-x2+2x-$\frac{2}{3}$>0;
(3)$\frac{x+1}{2-x}$≥3;
(4)$\frac{3{x}^{2}-14x+14}{{x}^{2}-6x+8}$≥1.

分析 (1)由一元二次方程的解法求出对应方程的根,由一元二次不等式的解法求出不等式的解集;
(2)先化简不等式,由一元二次方程的解法求出对应方程的根,由一元二次不等式的解法求出不等式的解集;
(3)先化简分式不等式,再等价转化为一元二次不等式组,由一元二次不等式的解法求出不等式的解集;
(4)先化简分式不等式,再等价转化为对应不等式组,由穿根法求出高次不等式的解集.

解答 解:(1)由6x2-x-1=0得(3x+1)(2x-1)=0,
解得x=$-\frac{1}{3}$ 或x=$\frac{1}{2}$,…2
所以不等式6x2-x-1≥0 的解集为{x|x$≤-\frac{1}{3}$或x$≥\frac{1}{2}$}…4
(2)由-x2+2x-$\frac{2}{3}$>0得3x2-6x+2<0,
因为3>0,且方程3x2-6x+2=0的解是:x1=$1-\frac{\sqrt{3}}{3}$,x2=$1+\frac{\sqrt{3}}{3}$,
所以原不等式的解集是 {x|$1-\frac{\sqrt{3}}{3}<x<1+\frac{\sqrt{3}}{3}$}…8
(3)由$\frac{x+1}{2-x}≥3$得$\frac{x+1}{2-x}-3≥0$,则$\frac{x+1-3(2-x)}{2-x}≥0$,即$\frac{4x-5}{2-x}≥0$,
所以$\left\{\begin{array}{l}{(4x-5)(x-2)≤0}\\{x-2≠0}\end{array}\right.$,解得$\frac{5}{4}≤x<2$,
则不等式的解集是{x|$\frac{5}{4}≤x<2$}…12
(4)原不等式化为:$\frac{3{x}^{2}-14x+14}{{x}^{2}-6x+8}-1≥0$,
整理得$\frac{(x-1)(x-3)}{(x-2)(x-4)}≥$ 0
即$\left\{\begin{array}{l}{(x-1)(x-2)(x-3)(x-4)≥0}\\{x-2≠0且x-4≠0}\end{array}\right.$,如图
所以原不等式的解集为{x|x≤1或2<x≤3或x>4}…16

点评 本题考查了分式不等式的化简以及等价转化,一元二次不等式的解法,以及穿根法求高次不等式的解集,考查转化思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设随机变量X服从正态分布N(0,1),如果P(X≤1)=0.8413,则P(-1<X<0)=0.3413.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=cos(x+φ)(-$\frac{π}{2}$<φ≤$\frac{π}{2}$)的图象向右平移$\frac{π}{4}$个单位后,与函数y=sin(x+$\frac{π}{3}$)的图象重合,则φ=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某校组织高一、高二年级书法比赛,高一、高二年级参赛人数分别占60%、40%;并且高一年级获奖人数占本年级参赛人数的$\frac{1}{6}$,高二年级获奖人数占本年级参赛人数的$\frac{1}{8}$.现从所有参赛学生中任意抽取一人,记事件A表示该学生来自高一,事件B表示该学生获奖,则P(B|$\overline{A}$)的值为(  )
A.$\frac{1}{8}$B.$\frac{2}{15}$C.$\frac{5}{36}$D.$\frac{3}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式|x+2|≤5的解集是(  )
A.{x|x≤1或x≥2}B.{x|-7≤x≤3}C.{x|-3≤x≤7}D.{x|-5≤x≤9}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲、乙、丙3人独立地破译某个密码,每人译出密码的概率均为$\frac{1}{4}$,则恰有2人译出密码的概率是$\frac{9}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是谢宾斯基(Sierpinsiki)三角形,在所给的四个三角形图案中,着色的小三角形个数构成数列{an}的前4项,则{an}的通项公式可以是(  )
A.an=3n-1B.an=2n-1C.an=3nD.an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设服从二项分布B(n,p)的随机变量ξ的期望和方差分别是2.4与1.68,则二项分布的参数n、p的值为(  )
A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A、B、C的对边分别是a、b、c,且b2+c2-a2=bc,且∠BDC=135°,AC=2$\sqrt{3}$,DB=3.
(1)求∠A的大小;
(2)求 BC.

查看答案和解析>>

同步练习册答案