精英家教网 > 高中数学 > 题目详情
19.设随机变量X服从正态分布N(0,1),如果P(X≤1)=0.8413,则P(-1<X<0)=0.3413.

分析 根据随机变量符合正态分布和正态分布的曲线关于x=0对称,得到一对对称区间的概率之间的关系,即可得到要求的区间的概率.

解答 解:∵随机变量X服从正态分布N(0,1),
∴曲线关于直线x=0对称,
∵P(X≤1)=0.8413,
∴P(-1<X<0)=P(X≤1)-0.5=0.3413,
故答案为:0.3413.

点评 本题考查正态分布,正态曲线有两个特点:(1)正态曲线关于直线x=μ对称;(2)在正态曲线下方和x轴上方范围内的区域面积为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知一个几何体的三视图如图所示,则该几何体表面积为(  )
A.B.$\frac{15π}{4}$C.$\frac{3\sqrt{3}π}{4}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式2|x-1|+x-4>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|2x+1|-|x-a|(a>0).
(1)当a=4时,解关于x的不等式f(x)>2;
(2)若f(x)的图象与x轴围成的三角形的面积为6,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有(  )
A.24种B.9种C.3种D.26种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)-1,x∈R.
(1)求函数f(x)的单调递减区间;
(2)若函数F(x)=cos(2x-$\frac{π}{3}$)+3|f(x)+1|-m,x∈[-$\frac{π}{2}$,$\frac{π}{3}$]有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.现有两本相同的数学书,两本相同的英语书(记a,b分别表示数学书和英语书),从中取出两本书送给小朋友,则所有不同的选法为aa,ab,bb(用a,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,若复数z满足i•z=1+i,则z=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解下列不等式.
(1)6x2-x-1≥0;
(2)-x2+2x-$\frac{2}{3}$>0;
(3)$\frac{x+1}{2-x}$≥3;
(4)$\frac{3{x}^{2}-14x+14}{{x}^{2}-6x+8}$≥1.

查看答案和解析>>

同步练习册答案