精英家教网 > 高中数学 > 题目详情
已知点E、F、G分别是正方体ABCD-A1B1C1D1的棱AA1、BC、AB的中点,
(1)求直线EF和平面ABCD所成角的正切值;
(2)求证:DG⊥EF;
(3)在棱B1C1上求一点M,使得DG⊥平面EFM。

(1)解:在正方体AC1中,
∵AA1⊥AD,AA1⊥AB,
∴AA1⊥平面ABCD,连结AF,
则∠EFA就是EF与平面ABCD所成的角,
设正方体棱长为a,
∵点F是BC的中点,
∴AF=
而AE=
则在Rt△EAF中,tan∠EAF=为所求。
(2)证明:在正方形ABCD中,
∵G是AB的中点,F是BC的中点,
∴DG⊥AF,
∵EA⊥平面ABCD,由三垂线定理,
∴DG⊥EF;
(3)解:当点M在棱B1C1的中点时,DG⊥平面EFM;
证明如下:连结MF、EM,
∵F是BC的中点,
∴MF∥BB1
∵BB1∥AA1
∴MF∥AA1
∵AA1⊥平面ABCD,
∴MF⊥平面ABCD,
∴MF⊥DG,
∵DG⊥EF,
∴DG⊥平面EFM。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且
BE
BC
=
CF
CD
=
DG
DA
,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为
4
5
?若存在,求出线段CQ的长;若不存在,请说明理由.
(文)已知坐标平面内的一组基向量为
e
1
=(1,sinx)
e
2
=(0,cosx)
,其中x∈[0,
π
2
)
,且向量
a
=
1
2
e
1
+
3
2
e
2

(1)当
e
1
e
2
都为单位向量时,求|
a
|

(2)若向量
a
和向量
b
=(1,2)
共线,求向量
e
1
e
2
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知空间四边形的每条边和对角线长都等于a,点E、F、G分别为AB、AD、DC的中点,则a2等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且
BE
BC
=
CF
CD
=
DG
DA
,P为GE与OF的交点,建立如图坐标系,求P点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:陕西省师大附中2011-2012学年高一下学期期末考试数学试题 题型:047

如图,已知点E,F,G,H分别为空间四边形ABCD的边AB,BC,CD,DA的中点,求证:BH∥FG.

查看答案和解析>>

同步练习册答案