精英家教网 > 高中数学 > 题目详情

已知二次函数为整数)且关于的方程在区间内有两个不同的实根,(1)求整数的值;(2)若时,总有,求的最大值。

 

【答案】

(1)2(2)9

【解析】本试题主要是考查了二次函数的图像与性质的综合运用。

(1)在区间内有两个不同的实根,

(2)

∴当时,总有,可知t的最值问题。

解:(1)在区间内有两个不同的实根,

……8分

(2)

∴当时,总有的最大值为9。……12分。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=mg(x)-ln(x+1),其中m为非零常数
(1)求函数g(x)的解析式;
(2)当-2<m<0时,判断函数f(x)的单调性并且说明理由;
(3)证明:对任意的正整数n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(t)=at2-
b
t
+
1
4a
(t∈R)有最大值且最大值为正实数,集合A=
x/
x-a
x
<0
,集合B=
x/x2b2

(1)求A和B;
(2)定义A与B的差集:A-B=
x/x∈A
且x∉B.且x∈A.P(E)为x取自A-B的概率.P(F)为x取自A/B的概率.解答下面问题:
①当a=-3,b=2时,求P(E),P(F)取值?
②设a,b,x均为整数时,写出a与b的三组值,使P(E)=
2
3
,P(F)=
1
3

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高一下学期期末考试理科数学试卷(解析版) 题型:解答题

已知二次函数为整数)且关于的方程在区间内有两个不同的实根,(1)求整数的值;(2)若对一切,不等式恒成立,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数为整数,且函数在(-2,-1)上恰有一个零点,求a的值.

查看答案和解析>>

同步练习册答案