精英家教网 > 高中数学 > 题目详情
已知平行六面体OABC-O1A1B1C1,且
OA
=
a
OC
=
b
OO1
=
C
,若点G是侧面AA1B1B的中心,
OG
=x
a
+y
b
+z
c
,则x+y+z=
 
分析:根据
OG
=
OA
+
AG
=
a
+
b
+
c
2
,又由
OG
=x
a
+y
b
+z
c
,解出x,y,z的值,即可得到x+y+z的值
解答:解:
OG
=
OA
+
AG
=
OA
+
AB
+
AA1
2
=
a
+
b
+
c
2
,又
OG
=x
a
+y
b
+z
c

∴x=1,y=
1
2
=z,∴x+y+z=2,
故答案为2.
点评:本题考查两个向量的加减法的法则,以及其几何意义,得到
OG
=
a
+
b
+
c
2
,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:黄冈中学 高二数学(下册)、考试卷3 空间的角度与距离同步测试卷 题型:044

如图,已知向量,可构成空间向量的一组基底,若,在向量已有的运算法则基础上,新定义一种运算.显然a×b的结果仍为一向量,记作p.

(1)求证:向量p为平面OAB的法向量;

(2)求证:以OA,OB为边的平行四边形OADB面积等于|a×b|;

(3)将得到四边形OADB按向量平移,得到一个平行六面体,试判断平行六面体的体积V与|(a×b)·c|的大小.

查看答案和解析>>

科目:高中数学 来源:黄冈中学 高二数学(下册)、考试卷5 简单几何体同步测试卷(二) 题型:044

如图,已知向量,可构成空间向量的一组基底,若,在向量已有的运算法则基础上,新定义一种运算.显然的结果仍为一向量.

(1)求证:向量p为平面OAB的法向量;

(2)求证:以OA,OB为边的平行四边形OADB的面积等于

(3)得到四边形OADB按向量平移,得到一个平行六面体,试判断平行六面体的体积V与的大小关系.

查看答案和解析>>

同步练习册答案