精英家教网 > 高中数学 > 题目详情
通过随机询句110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
总计
爱好4020
不爱好2030
总计
计算K2(K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

问:大学生爱好该项运动与性别是否有关.
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附表:
考点:独立性检验的应用
专题:计算题,概率与统计
分析:代入公式计算k的值,和临界值表比对后即可得到答案.
解答: 解:2×2列联表
总计
爱好402060
不爱好203050
总计6050110
K2=
110×(40×30-20×20)2
60×50×60×50
≈7.8

∴6.635<7.8<10.828
答:有99%以上把握认为爱好该项运动与性别有关.
点评:本题考查独立性检验的应用,解题的关键是利用列联表正确的计算出观测值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,底面ABCD为等腰梯形,PD⊥平面ABCD,AB=2CD,PD=AD=CD=1.
(1)求AD与PB所成角的大小;
(2)求AB与面PBD所成角的大小;
(3)求面PAD与面PBC所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn为正项数列{an}的前n项和,Sn=
1
4
(an+3)(an-1).
(1)求通项公式an
(2)设bn=
an+1
an
+
an
an+1
,且{bn}前n项和为Tn,求证:Tn>2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数y=
3x
+x3的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4,A为PD的中点,如图1.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且SE=
1
3
SD,如图2.

(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值;
(3)在线段BC上是否存在点F,使SF∥平面EAC?若存在,确定F的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平面四边形ABCP中,D为PA的中点,PA⊥AB,CD∥AB,且PA=CD=2AB=4.将此平面四边形ABCP沿CD折成直二面角P-DC-B,连接PA、PB,设PB中点为E.
(Ⅰ)证明:平面PBD⊥平面PBC;
(Ⅱ)在线段BD上是否存在一点F,使得EF⊥平面PBC?若存在,请确定点F的位置;若不存在,请说明理由.
(Ⅲ)求直线AB与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=x,a2=3x,Sn+1+Sn+Sn-1=3n2+2(n≥2,n∈N*),Sn是数列{an}的前n项和,若对?n∈N*,an<an+1恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个不等的正整数x,y,满足
x2
x+y
为质数,试比较x和y的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,SC⊥平面ABC,M、N分别是SB和SC的中点,设MN=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°
(Ⅰ)求证:平面AMN⊥平面SAC;
(Ⅱ)求二面角M-AB-C的平面角的余弦值;
(Ⅲ)求AN和CM所成角的余弦值.

查看答案和解析>>

同步练习册答案