精英家教网 > 高中数学 > 题目详情

如图,在五面体中,已知平面

(1)求证:
(2)求三棱锥的体积.

(1)详见解析,(2)

解析试题分析:(1)证明线线平行,一般思路为利用线面平行的性质定理与判定定理进行转化. 因为平面平面,所以平面,又平面,平面平面,所以.(2)求三棱锥的体积,关键是找寻高.可由面面垂直性质定理探求,因为平面,所以有面平面,则作就可得平面.证明平面过程也可从线线垂直证线面垂直.确定是三棱锥的高之后,可利用三棱锥的体积公式.
试题解析:

(1)因为平面平面
所以平面,             3分
平面,平面平面
所以.                     6分
(2)在平面内作于点
因为平面平面,所以
平面
所以平面
所以是三棱锥的高.           9分
在直角三角形中,,所以
因为平面平面,所以
又由(1)知,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.

(1)求证:ED⊥平面EBC;
(2)求三棱锥E-DBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面平面,且四边形为矩形,四边形为直角梯形,
,,,,.
(1)作出这个几何体的三视图(不要求写作法).
(2)设是直线上的动点,判断并证明直线与直线的位置关系.
(3) 求三棱锥的体积.[来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体的棱长为2,E、F分别是的中点,过、E、F作平面于G.
(l)求证:EG∥
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1﹣A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S
(1)证明:中截面DEFG是梯形;
(2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1﹣A2B2C2的体积V)时,可用近似公式V=S﹣h来估算.已知V=(d1+d2+d3)S,试判断V与V的大小关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AE、CF都与平面ABCD垂直,AE=1,CF=2.

(1)求二面角B-AF-D的大小;
(2)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形ABEF中,,讲DCEF沿CD折起,使得,得到一个几何体,

(1)求证:平面ADF;
(2)求证:AF平面ABCD;
(3)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=AB.

(1)求证:EF∥平面BC1D;
(2)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案