如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.
(1)求证:ED⊥平面EBC;
(2)求三棱锥E-DBC的体积.
(1)见解析;(2)
解析试题分析:
(1)易得△DD1E为等腰直角三角形DE⊥EC,BC⊥平面 BC⊥DE,所以DE⊥平面EBC平面DEB⊥平面EBC.
(2)需要做辅助线,取CD中点M,连接EM∥,DCB (这个证明很关键),然后根据公式.
试题解析:
(1)在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.
∴△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.
∴,即DE⊥EC.
在长方体ABCD-中,BC⊥平面,又DE平面,
∴BC⊥DE.又,
∴DE⊥平面EBC.又
∴平面DEB⊥平面EBC.
(2)取CD中点M,连接EM,
E为D1C1的中点,
∥,且,
又DCB
.
考点:线面垂直,三棱锥的体积.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.
(1)求证:平面ABM平面PCD;
(2)求三棱锥M-ABD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)证明:PQ⊥平面DCQ;
(2)求棱锥QABCD的体积与棱锥PDCQ的体积的比值.[来
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直三棱柱ABC-A1B1C1中, D、E分别是AB,BB1的中点.
(1)证明: BC1//平面A1CD;
(2)设AA1="AC=CB=1," AB=,求三棱锥D一A1CE的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com