如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)证明:PQ⊥平面DCQ;
(2)求棱锥QABCD的体积与棱锥PDCQ的体积的比值.[来
(1)祥见解析; (2)1.
解析试题分析:(1)要证直线与平面垂直,只须证明直线与平面内的两条相交直线垂直即可,注意到QA⊥平面ABCD,所以有平面PDAQ⊥平面ABCD,且交线为AD,又因为四边形ABCD为正方形,由面面垂直的性质可得DC⊥平面PDAQ,从而有PQ⊥DC,又因为PD∥QA,且QA=AB=PD ,所以四边形PDAQ为直角梯形,利用勾股定理的逆定理可证PQ⊥QD;从而可证 PQ⊥平面DCQ;(2)设AB=a,则由(1)及已知条件可用含a的式子表示出棱锥Q-ABCD的体积和棱锥P-DCQ的体积从而就可求出其比值.
试题解析:(1)证明:由条件知PDAQ为直角梯形.
因为QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交线为AD.
又四边形ABCD为正方形,DC⊥AD,
所以DC⊥平面PDAQ.可得PQ⊥DC.
在直角梯形PDAQ中可得DQ=PQ=PD,
则PQ⊥QD.所以PQ⊥平面DCQ.
(2)设AB=a.由题设知AQ为棱锥QABCD的高,所以棱锥Q-ABCD的体积V1=a3.
由(1)知PQ为棱锥P-DCQ的高,而PQ=a,△DCQ的面积为a2,
所以棱锥P-DCQ的体积V2=a3.
故棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值为1.
考点:1.线面垂直;2.几何体的体积.
科目:高中数学 来源: 题型:解答题
如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.
(1)求证:ED⊥平面EBC;
(2)求三棱锥E-DBC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.
(1)当点M是EC中点时,求证:BM//平面ADEF;
(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知平面平面,且四边形为矩形,四边形为直角梯形,
,,,,.
(1)作出这个几何体的三视图(不要求写作法).
(2)设是直线上的动点,判断并证明直线与直线的位置关系.
(3) 求三棱锥的体积.[来.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AE、CF都与平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大小;
(2)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com