精英家教网 > 高中数学 > 题目详情

(本题满分12分)
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.

边长为4,体积为

解析试题分析:由于展开图是分别是所在边的中点,根据三角形的性质,是正三角形,其边长为4,原三棱锥的侧棱也是2,要求棱锥的体积需要求出棱锥的高,由于是正棱锥,顶点在底面上的射影是底面的中心,由相应的直角三角形可求得高,得到体积.
试题解析:由题意,所以的中位线,因此是正三角形,且边长为4.

,三棱锥是边长为2的正四面体
∴如右图所示作图,设顶点在底面内的投影为,连接,并延长交
中点,的重心,底面

【考点】图象的翻折,几何体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.
(1)求证:平面ABM平面PCD;
(2)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)证明:PQ⊥平面DCQ;
(2)求棱锥Q­ABCD的体积与棱锥P­DCQ的体积的比值.[来

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中, D、E分别是AB,BB1的中点.

(1)证明: BC1//平面A1CD;
(2)设AA1="AC=CB=1," AB=,求三棱锥D一A1CE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, .

(1)证明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.

(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1=求三棱锥B1-A1DC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若多面体的各个顶点都在同一球面上,则称这个多面体
内接于球.如图,设长方体内接于球
两点之间的球面距离
为________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

把边长为1的正方形ABCD沿对角线BD折起形成三棱锥C-ABD的主视图与俯视图如图所示,则左视图的面积为        

查看答案和解析>>

同步练习册答案