精英家教网 > 高中数学 > 题目详情

已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.

(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1=求三棱锥B1-A1DC的体积.

(1)见解析;(2)见解析;(3)1.

解析试题分析:证明(1)连接AC1交A1C于点E,连接DE
因为四边形AA1C1C是矩形,知E为AC1的中点
又D是AB的中点,得到DE∥BC1
从而可得BC1∥面CA1.
证明(2)由AC=BC,D是AB的中点,得AB⊥CD,
由AA1⊥面ABC,得AA1⊥CD,
从而CD⊥面AA1B1B,进一步得平面CA1D⊥平面AA1B1B.
(3)利用,可求得体积.
试题解析:证明(1)连接AC1交A1C于点E,连接DE
因为四边形AA1C1C是矩形,则E为AC1的中点
又D是AB的中点,DE∥BC1
又DE面CA1D,BC1面CA1D,BC1∥面CA1    (4分)
证明(2)AC=BC,D是AB的中点,AB⊥CD,
又AA1⊥面ABC,CD面ABC,AA1⊥CD,
AA1∩AB=A,CD⊥面AA1B1B,CD面CA1D,
平面CA1D⊥平面AA1B1B        (8分)

(3)解:,则(2)知CD⊥面ABB1B,所以高就是CD=,BD=1,BB1=,所以A1D=B1D=A1B1=2,,      (12分)
考点:平行关系,垂直关系,几何体的特征,几何体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体的棱长为2,E、F分别是的中点,过、E、F作平面于G.
(l)求证:EG∥
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AE、CF都与平面ABCD垂直,AE=1,CF=2.

(1)求二面角B-AF-D的大小;
(2)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体中,四边形是边长为的正方形,平面的中点.

(1)求证:平面
(2)求证:平面
(3)求五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形ABEF中,,讲DCEF沿CD折起,使得,得到一个几何体,

(1)求证:平面ADF;
(2)求证:AF平面ABCD;
(3)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.

(1)证明直线BC∥EF;
(2)求棱锥FOBED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.

(1)求证:
(2)在棱上确定一点,使四点共面,并求此时的长;
(3)求几何体的体积.

查看答案和解析>>

同步练习册答案