精英家教网 > 高中数学 > 题目详情

(本小题共13分)

已知函数

   (I)若x=1为的极值点,求a的值;

   (II)若的图象在点(1,)处的切线方程为

(i)求在区间[-2,4]上的最大值;

(ii)求函数的单调区间.

(I)0或2

(II)(i)8

(ii)当m=2时,G(x)在(-∞,+∞)单调递减;

时,G(x)在(-∞,2-m),(0,+∞)单调递减,在(2-m,0)单调递增;

时,G(x)在(-∞,0),(2-m,+∞)单调递减,在(0,2-m)单调递增.


解析:

(I)

       是极值点

       ,即

       或2.…………………………………………………………3分

(II)上.

     ∵(1,2)在上  

     又

    

    

 (i)由可知x=0和x=2是的极值点.

    

     在区间[-2,4]上的最大值为8.…………………………8分

 (ii)

     

      令,得

      当m=2时,,此时单调递减

      当时:     

x

(-∞,2,-m)

2-m

(2-m,0)

0

(0,+∞)

G′(x

0

+

0

G(x

当时G(x)在(-∞,2,-m),(0,+∞)单调递减,在(2-m,0)单调递增.

时:

x

(-∞,0)

0

(0,2-m)

2-m

(2-m+∞)

G′(x

0

+

0

G(x

    此时G(x)在(-∞,0),(2-m+∞)单调递减,在(0,2-m)单调递增,综上所述:当m=2时,G(x)在(-∞,+∞)单调递减;

时,G(x)在(-∞,2-m),(0,+∞)单调递减,在(2-m,0)单调递增;

时,G(x)在(-∞,0),(2-m,+∞)单调递减,在(0,2-m)单调递增.

                     ………………………………………………………………13分

练习册系列答案
相关习题

科目:高中数学 来源:2011届北京市丰台区高三年级第二学期统一练习理科数学 题型:解答题


(本小题共13分)
已知函数
(Ⅰ)若处取得极值,求a的值;
(Ⅱ)求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市高三压轴文科数学试卷(解析版) 题型:解答题

(本小题共13分)

已知向量,设函数.

(Ⅰ)求函数上的单调递增区间;

(Ⅱ)在中,分别是角的对边,为锐角,若的面积为,求边的长.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题

(本小题共13分)

某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.

(Ⅰ)求分别获得一、二、三等奖的概率;

(Ⅱ)设摸球次数为,求的分布列和数学期望.

 

查看答案和解析>>

科目:高中数学 来源:北京市宣武区2010年高三第一次质量检测数学(文)试题 题型:解答题

(本小题共13分)
已知函数
(I)当a=1时,求函数的最小正周期及图象的对称轴方程式;
(II)当a=2时,在的条件下,求的值.

查看答案和解析>>

同步练习册答案