精英家教网 > 高中数学 > 题目详情

【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).

(1)将V表示成r的函数V(r),并求该函数的定义域;

(2)讨论函数V(r)的单调性,并确定rh为何值时该蓄水池的体积最大.

【答案】1V(r) (300r4r3)定义域为 2单调性见解析,r5h8蓄水池的体积最大

【解析】试题分析:(1)先由圆柱的侧面积及底面积计算公式计算出侧面积及底面积,进而得出总造价,依条件得等式,从中算出,进而可计算,再由可得;(2)通过求导,求出函数内的极值点,由导数的正负确定函数的单调性,进而得出取得最大值时的值.

1蓄水池的侧面积的建造成本为元,底面积成本为

蓄水池的总建造成本为

所以即

又由可得

故函数的定义域为6

2)由(1)中

可得

,则

时, ,函数为增函数

,函数为减函数

所以当时该蓄水池的体积最大 12.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成,该省教育厅为了解正在读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见,如图是根据样本的调查结果绘制的等高条形图.

(1)根据已知条件与等高条形图完成下面的列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?

注:,其中.

(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为,试求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l与两直线y=1,x﹣y﹣7=0分别交于A,B两点,若直线AB的中点是M(1,﹣1),则直线l的斜率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求的单调递增区间;

2)设,且有两个极值,其中,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =﹣1,求下列各式的值: (Ⅰ)
(Ⅱ) cos2 +α)﹣sin(π﹣α)cos(π+α)+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=( x﹣( x1+2(x∈[﹣2,1])的值域是(
A.( ,10]
B.[1,10]
C.[1, ]
D.[ ,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)当时,求函数的定义域;

(2)若判断的奇偶性;

(3)是否存在实数使函数[2,3]递增,并且最大值为1,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的极小值为,其导函数的图象经过点,如图所示.

Ⅰ)求的解析式.

Ⅱ)若函数在区间上有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥S﹣ABC中,SO⊥平面ABC,侧面SAB与SAC均为等边三角形,∠BAC=90°,O为BC的中点,求二面角A﹣SC﹣B的余弦值.

查看答案和解析>>

同步练习册答案