精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为分别为椭圆的左右焦点,为椭圆的短轴顶点,且.

(1)求椭圆的方程

(2)过作直线交椭圆于两点,求的面积的最大值

【答案】(1).(2).

【解析】

试题分析:(1)由离心率为可得解出的值,即可得出椭圆的方程;(2)由(1)可知设直线的方程为为,与椭圆方程联立化为,,设,利用根与系数的关系可得,利用,及基本不等式的性质即可得出结果.

试题解析:(1)∵的离心率为

,且

∴椭圆的标准方程是.

(2) 由(1)可知,设直线的方程为

联立

当且仅当时,

的面积取得最大值.

【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=x2的图象在点(x0 , x02)处的切线为l,若l也与函数y=lnx,x∈(0,1)的图象相切,则x0必满足(
A.0<x0
B. <x0<1
C. <x0
D. <x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣ |+|x+m|(m>0)
(1)证明:f(x)≥4;
(2)若f(2)>5,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,F是椭圆P: (a>b>0)的右焦点,已知A(0,﹣2)与椭圆左顶点关于直线y=x对称,且直线AF的斜率为
(1)求椭圆P的方程;
(2)过点Q(﹣1,0)的直线l交椭圆P于M、N两点,交直线x=﹣4于点E, = = ,证明:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分)已知椭圆的左焦点为,过的直线交于两点.

)求椭圆的离心率.

)当直线轴垂直时,求线段的长.

)设线段的中点为为坐标原点,直线交椭圆交于两点,是否存在直线使得?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,对本单位的50名员工进行了问卷调查,得到了如下列联表:

喜欢户外运动

不喜欢户外运动

合计

男性

5

女性

10

合计

50

已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由;
(3)经进一步调查发现,在喜欢户外运动的10名女性员工中,有4人还喜欢瑜伽.若从喜欢户外运动的10位女性员工中任选3人,记ξ表示抽到喜欢瑜伽的人数,求ξ的分布列和数学期望.
下面的临界值表仅供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式: ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,AC是弦,AD⊥CE,垂足为D,AC平分∠BAD.

(1)求证:直线CE是⊙O的切线;
(2)求证:AC2=ABAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,
(1)求B的大小;
(2)若a=2, ,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示.

组号

分组

频数

频率

1

5

0.05

2

35

0.35

3

4

5

10

0.1

(1)求的值.

2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?

(3)在(2)的前提下,从抽到6名学生中再随机抽取2名被甲考官面试,求这2名学生来自同一组的概率.

查看答案和解析>>

同步练习册答案